Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based on the percentage of an accuracy measure of the previous work, are surveyed and introduced, with the aim of producing a concise review of using these algorithms in crime prediction. It is expected that this review study will be helpful for presenting such techniques to crime researchers in addition to supporting future research to develop these techniques for crime analysis by presenting some crime definition, prediction systems challenges and classifications with a comparative study. It was proved though literature, that supervised learning approaches were used in more studies for crime prediction than other approaches, and Logistic Regression is the most powerful method in predicting crime.
Carbon fibre reinforced polymers are widely used to strengthen steel structural elements. These structural elements are normally subjected to static, dynamic and fatigue loadings during their life-time. A number of studies have focused on the characteristics of CFRP sheets bonded to steel members under static, dynamic and fatigue loadings. However, there is a gap in understanding the bonding behaviour between CFRP laminates and steel members under impact loading. This paper shows the effect of different load rates from quasi-static to 300 × 103 mm/min on this bond. Two types of CFRP laminate, CFK 150/2000 and CFK 200/2000, were used to strengthen steel joints using Araldite 420 epoxy. The results show a significant bond strength enhancemen
... Show MoreUndesirable growth of potato (Solanum tuberosum L.) crop under an excessive N fertilizer application is the main obstacle presently. This research was conducted to investigate the response of different potato cultivars; Russet Burbank, Shepody, and Superior, and its qualitative characteristics under a series of N rates. Six rates of N fertilization (0–280 kg ha−1) were applied on 11 sites in a randomized complete block design, with four replications. Sites with ≥30 g kg−1 of soil organic matter (OM) produced total tuber yield, marketable yield, and tuber weight per plant 39.5, 45.2, and 54.9%, respectively, higher than sites with ≤30 g kg−1 of OM. Tubers specific gravity increased by 0.18% in the sites with ≥30 g kg−1 of OM.
... Show MoreTHE PROBLEM OF TRANSLATING METAPHOR IN AN ARTISTIC TEXT (ON THE MATERIAL OF RUSSIAN AND ARABIC LANGUAGES)
Semantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the po