Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based on the percentage of an accuracy measure of the previous work, are surveyed and introduced, with the aim of producing a concise review of using these algorithms in crime prediction. It is expected that this review study will be helpful for presenting such techniques to crime researchers in addition to supporting future research to develop these techniques for crime analysis by presenting some crime definition, prediction systems challenges and classifications with a comparative study. It was proved though literature, that supervised learning approaches were used in more studies for crime prediction than other approaches, and Logistic Regression is the most powerful method in predicting crime.
Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay
... Show MoreThe purpose of this paper is to apply different transportation models in their minimum and maximum values by finding starting basic feasible solution and finding the optimal solution. The requirements of transportation models were presented with one of their applications in the case of minimizing the objective function, which was conducted by the researcher as real data, which took place one month in 2015, in one of the poultry farms for the production of eggs
... Show MoreThis study has been developed axes of the search, including: Search (deliberative) language and idiomatically, and Description Language (b social phenomenon), and the definition of the theory of (acts of speech), and discussed the problem of the conflict between tradition and innovation, as defined objectively have a target aimed at reviving the deliberative thought when Arab scholars , and the balance between the actual done Arab and Western rhetoric, but Meet in intellectual necessity, a sober reading that preserve the Arab language prestige, and its position in the light of the growing tongue Sciences, as long as we have inherited minds unique, and heritage huge able to consolidate the Arab theory lingual in linguistics.
Idioms are a very important part of the English language: you are told that if you want to go far (succeed) you should pull your socks up (make a serious effort to improve your behaviour, the quality of your work, etc.) and use your grey matter (brain).1 Learning and translating idioms have always been very difficult for foreign language learners. The present paper explores some of the reasons why English idiomatic expressions are difficult to learn and translate. It is not the aim of this paper to attempt a comprehensive survey of the vast amount of material that has appeared on idioms in Adams and Kuder (1984), Alexander (1984), Dixon (1983), Kirkpatrick (2001), Langlotz (2006), McCarthy and O'Dell (2002), and Wray (2002), among others
... Show MoreIn this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show Moreيعد هذا النص أحد النصوص المسمارية المصادرة التي بحوزة المتحف العراقي، ويحمل الرقم المتحفي (235869)، قياساته )12،7x 6x 2،5سم). يتضمن مدخولات كميات من الشعير،أرخ النص الى عصر أور الثالثة (2012-2004 ق.م) و يعود الى السنة الثالثة من حكم الملك أبي-سين (2028-2004 ق.م)،أن الشخصية الرئيسة في هذا النص هو)با-اَ-كا مسمن الماشية( من مدينة أري-ساكرك، ومقارنته مع النصوص المسمارية المنشورة التي تعود الى أرشيفه يبلغ عددها (196) نصاً تضمنت نشاطاته م
... Show MoreFeature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show MoreThis study aims to apply the theory of "Text from Text and the Plus Dimension" in the analysis of the Prophetic discourse found in the section on the virtues of knowledge and scholars from Imam Sahih al-Bukhari's book. This section covers several topics, including the virtue of gathering for the sake of learning, the superiority of a scholar over a worshipper, the excellence of jurisprudence in the religion of Allah, the acquisition of knowledge through the passing away of scholars, the merit of inviting people to Allah, the continuing benefit of beneficial knowledge after a scholar's demise, the warning against seeking knowledge for purposes other than Allah, and the Prophet seeking refuge from knowledge tha
... Show More