Background: Chemotherapeutic medication treatment for cancer is typically used in conjunction with other techniques as part of a routine regimen. It is well established that the capacity of different chemotherapeutic drugs to induce apoptosis is correlated with their anticancer efficacy. Quinazolinone-based drugs have demonstrated excellent responses from several cancer cell types. These substances have a lot of potential for use as building blocks in the creation of apoptosis inducers. Objective: To assess the new quinazolinone derivatives (M1 and M2) that were recently synthesized for their potential to halt wound healing and to use the acridine orange/propidium iodide (AO/PI) double stain to assess their capacity to induce apoptosis in the chosen cancer cell lines. Methods: Using the breast carcinoma cell line (MCF-7) and the lung adenocarcinoma cell line (A549), two quinazolinone derivatives (M1 and M2) were investigated for their capacity to inhibit wound healing and induce apoptosis. Results: In both cell lines, the chemicals were found to be effective inducers of apoptosis and to considerably limit wound healing. Conclusions: In cancer cell lines (MCF-7 and A549), compounds M1 and M2 efficiently inhibited wound repair and triggered apoptosis.
2-amino-4-(4-chloro phenyl)-1,3-thiazole (1) was synthesized by refluxing thiourea with para-chloro phenacyl bromide in absolute methanol. The condensation of amine compound (1) with phenylisothiocyanate in the presence of pyridine will produce 1-(4-(4-chlorophenyl)thiazol-2-yl)-3-phenylthiourea(2), which is upon treatment with 2,4 dinitrophenyl hydrazine by conventional method, afforded 1- ( 4 - ( 4 – chlorophenyl ) thiazol – 2 – yl ) – 3 - phenylhydrazonamide,N' - ( 2 , 4 -dinitrophenyl) ,(3).The characterization of the titled compounds were performed utilizing FTIR spectroscopy, 1HNMR and CHNS elemental analysis, and by me
... Show MoreLevofloxacin belongs to the fluoroquinolone family; it is a potent broad-spectrum bactericidal agent. The pharmacophore required for significant antibacterial activity is the C-3 carboxylic acid group and the 4-pyridine ring with the C-4 carbonyl group, into which binding to the DNA bases occur. In this work, we tried to show that by masking the carboxyl group through amide formation using certain amines to form levofloxacin carboxamides, an interesting activity is kept. Levofloxacin carboxamides on the C-3 group were prepared, followed by the formation of their copper complexes. The target compounds were characterized by FT-IR, elemental analysis. The antimicrobial activity of the target compounds was evaluated and showed satisfactory resu
... Show MoreSynthesis of 2-(4-Acetyl-phenyl)-4-nitro-isoindole-1, 3-dione chalcones were performed by fusion of 3-nitro phthalic anhydride with p-aminoacetophenone. Then the later was grinded with different aromatic aldehydes in the presence of sodium hydroxide to produce new chalcones derivatives A3-10 without using any solvent formation of new N- arylphthailimide chalcones were confirmed by FT-IR,1HNMR, 13CNMR spectroscopy and all final compounds were tested for their antifungal and antibacterial activity some of them showed more biological activity than the standard drugs
A theoretical and protection study was conducted of the corrosion behavior of carbon steel surface with different concentrations of the derivative (Quinolin-2-one), namly (1-Amino-4,7-dimethyl-6-nitro-1H-quinolin-2-one (ADNQ2O)). Theoretically, Density Functional Theory (DFT) of B3LYP/ 6-311++G (2d, 2p) level was used to calculate the optimized geometry, physical properties and chemical inhibition parameters, with the local reactivity to predict both the reactive centers and to locate the possible sites of nucleophilic and electrophilic attacks, in vacuum, and in two solvents (DMSO and H2O), all at the equilibrium geometry. Experimentally, the inhibition efficiencies (%IE) in the saline solution (of 3.5%) NaCl were studied using potentiomet
... Show MoreIn this study, synthesis of polymer Nanocomposites through the blending of prepared polymers with polyvinyl alcohol (a synthetic polymer) or chitosan (a natural polymer) then mixed with nano oxide silica by many steps. The new compound [I] was obtained via reaction of 3,3’-dimethoxybiphenyl-4,4’-diamine as starting material with malic anhydride in DMF then treatment with ammonium persulfate (NH4 )2 S2 O8 (as the initiator) in order to produce polymer [II]. Also, we prepared new polymers [III-V] by using the same starting material (3,3’-dimethoxybiphenyl-4,4’-diamine) with glutaric acid or adipic acid or isophthalic acid in DMF and pyridine. In this study, new polymer blending [VI-IX] and [X-XIII] were synthesized from a prepared pol
... Show More