Preferred Language
Articles
/
MxcsJ44BVTCNdQwCXztU
Experimental investigation and modelling of residual stresses in face milling of Al-6061-T3 using neural network
...Show More Authors

Milling process is a common machining operation that is used in the manufacturing of complex surfaces. Machining-induced residual stresses (RS) have a great impact on the performance of machined components and the surface quality in face milling operations with parameter cutting. The properties of engineering material as well as structural components, specifically fatigue life, deformation, impact resistance, corrosion resistance, and brittle fracture, can all be significantly influenced by residual stresses. Accordingly, controlling the distribution of residual stresses is indeed important to protect the piece and avoid failure. Most of the previous works inspected the material properties, tool parameters, or cutting parameters, but few of them provided the distribution of RS in a direct and singular way. This work focuses on studying and optimizing the effect of cutting speed, feed rate, and depth of cut for 6061-T3 aluminum alloy on the RS of the surface. The optimum values of geometry parameters have been found by using the L27 orthogonal array. Analysis and simulation of RS by using an artificial neural network (ANN) were carried out to predict the RS behavior due to changing machining process parameters. Using ANN to predict the behavior of RS due to changing machining process parameters is presented as a promising method. The milling process produces more RS at high cutting speed, roughly intermediate feed rate, and deeper cut, according to the results. The best residual stress obtained from ANN is ‒135.204 N/mm2 at a cutting depth of 5 mm, feed rate of 0.25 mm/rev and cutting speed of 1,000 rpm. ANN can be considered a powerful tool for estimating residual stress

Scopus Crossref
View Publication
Publication Date
Tue Jun 23 2020
Journal Name
Baghdad Science Journal
Anomaly Detection Approach Based on Deep Neural Network and Dropout
...Show More Authors

   Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct

... Show More
View Publication Preview PDF
Scopus (29)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Thu Jul 28 2022
Journal Name
Mechanics Based Design Of Structures And Machines
Experimental investigation on the damping characteristics in dry and saturated sands
...Show More Authors

Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Geotechnical Engineering And Sustainable Construction
Numerical Modelling of Surface Runoff in Watershed Areas Related to Bahr AL-Najaf
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Molecular Liquids
Corrosion inhibition behavior of expired diclofenac Sodium drug for Al 6061 alloy in aqueous media: Electrochemical, morphological, and theoretical investigations
...Show More Authors

The behavior corrosion inhibition of aluminum alloy (Al6061) in acidic (0.1 M HCl) and saline (3.5% NaCl) solutions was investigated in the absence and the presence of expired diclofenac sodium drug (DSD) as a corrosion inhibitor. The influence of temperature and was studied using electrochemical techniques. In addition, scanning electron microscopy (SEM) was used to study the surface morphology. The results showed that DSD acted as a powerful inhibitor in acidic solutions, while a moderate influence was observed with saline one. Maximum inhibition efficiency was 99.99 and 83.32% in acidic and saline solutions at 150 ppm of DSD, respectively. Corrosion current density that obtained using electrochemical technique was increased with temperat

... Show More
View Publication
Scopus (44)
Crossref (40)
Scopus Clarivate Crossref
Publication Date
Mon Apr 11 2011
Journal Name
Icgst
Employing Neural Network and Naive Bayesian Classifier in Mining Data for Car Evaluation
...Show More Authors

In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.

Publication Date
Mon May 01 2023
Journal Name
Journal Of Engineering
Experimental Investigation of Heat Transfer Enhancement in a Double Pipe Heat Exchanger Using Compound Technique of Transverse Vibration and Inclination Angle
...Show More Authors

Numerous tests are recently conducted to assess vibration's role in accelerating the heat transfer rate in various heat exchangers. In this work, the enhancement of heat transfer by the effect of transfer vibration and inclination angles on the surface of a double pipe heat exchanger experimentally has been investigated. A data acquisition system is applied to record the data of temperatures, flow rates, and frequencies over the tests. A compound technique was adopted, including the application of a set of inclination angles of (0°, 10°, 20°, and 30°) under the effect of frequency of vibration ranging from sub-resonance to over-resonance frequencies. The results showed that the overall heat transfer coefficient enhan

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Sun May 01 2022
Journal Name
International Journal Of Multiphase Flow
Application of artificial neural network to predict slug liquid holdup
...Show More Authors

Publication Date
Mon Jan 01 2024
Journal Name
Communications In Computer And Information Science
Automatic Identification of Ear Patterns Based on Convolutional Neural Network
...Show More Authors

Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in

... Show More
View Publication
Scopus Crossref
Publication Date
Mon Dec 24 2018
Journal Name
Civil Engineering Journal
Artificial Neural Network Model for the Prediction of Groundwater Quality
...Show More Authors

The present article delves into the examination of groundwater quality, based on WQI, for drinking purposes in Baghdad City. Further, for carrying out the investigation, the data was collected from the Ministry of Water Resources of Baghdad, which represents water samples drawn from 114 wells in Al-Karkh and Al-Rusafa sides of Baghdad city. With the aim of further determining WQI, four water parameters such as (i) pH, (ii) Chloride (Cl), (iii) Sulfate (SO4), and (iv) Total dissolved solids (TDS), were taken into consideration. According to the computed WQI, the distribution of the groundwater samples, with respect to their quality classes such as excellent, good, poor, very poor and unfit for human drinking purpose, was found to be

... Show More
View Publication
Crossref (31)
Clarivate Crossref
Publication Date
Sat Jul 28 2018
Journal Name
Journal Of Engineering
Experimental Investigation for the Removal of Toxic Gases from Vehicle Exhaust using Non-Thermal Plasma
...Show More Authors

In this study, the use of non-thermal plasma theory to remove toxic gases emitted from a vehicle was experimentally investigated. A non-thermal plasma reactor was constructed in the form of a cylindrical tube made of Pyrex glass. Two stainless steel rods were placed inside the tube to generate electric discharge and plasma condition, by connecting with a high voltage power supply (up to 40 kV). The reactor was used to remove the contaminants of a 1.25-liter 4-cylinder engine at ambient conditions. Several tests have been carried out for a ranging speed from 750 to 4,500 rpm of the engine and varying voltages from 0 to 32 kV. The gases entering the reactor were examined by a gas analyzer and the gases concentration ratio

... Show More
View Publication Preview PDF
Crossref (4)
Crossref