Malaria is a curative disease, with therapeutics available for patients, such as drugs that can prevent future malaria infections in countries vulnerable to malaria. Though, there is no effective malaria vaccine until now, although it is an interesting research area in medicine. Local descriptors of blood smear image are exploited in this paper to solve parasitized malaria infection detection problem. Swarm intelligence is used to separate the red blood cells from the background of the blood slide image in adaptive manner. After that, the effective corner points are detected and localized using Harris corner detection method. Two types of local descriptors are generated from the local regions of the effective corners which are Gabor based features and color based features. The extracted features are finally fed to Deep Belief Network (DBN) for classification purpose. Different tests were performed and different combinations of feature types are attempted. The achieved results showed that when using combined vectors of local descriptors, the system gives the desired accuracy which is 100%. The achieved result demonstrates the effectiveness of using local descriptors in solving malaria infection detection problem.
The Sebkha is considered the evaporative geomorphological features, where climate plays an active role. It forms part of the surface features in Mesopotamia plain of Iraqi, which is the most fertile lands, and because of complimentary natural and human factors turned most of the arable land to the territory of Sebkha lands. The use satellite image (Raw Data), Landsat 30M Mss for the year 1976 Landsat 7 ETM, and the Landsat 8 for year 2013 (LDCM) for the summer Landsat Data Continuity Mission and perform geometric correction, enhancements, and Subset image And a visual analysis Space visuals based on the analysis of spectral fingerprints earth's This study has shown that the best in the discrimination of Sebkha Remote sensing techniques a
... Show MoreConvolutional Neural Networks (CNN) have high performance in the fields of object recognition and classification. The strength of CNNs comes from the fact that they are able to extract information from raw-pixel content and learn features automatically. Feature extraction and classification algorithms can be either hand-crafted or Deep Learning (DL) based. DL detection approaches can be either two stages (region proposal approaches) detector or a single stage (non-region proposal approach) detector. Region proposal-based techniques include R-CNN, Fast RCNN, and Faster RCNN. Non-region proposal-based techniques include Single Shot Detector (SSD) and You Only Look Once (YOLO). We are going to compare the speed and accuracy of Faster RCNN,
... Show MoreThe aim of this research was to indicate the opinion of the Iraqi consumer about the quality and safety of local food products, the questionnaire was included 19 questions for product quality, price, distribution and promotion as a tool to survey the opinions of 128 consumers in Baghdad, the data was analyzed by using percentage, weighted mean, and weight percent, the results obtained showed that the Iraqi consumer prefer local food products for their high quality and appropriate price, however they need attention to packaging, promotion and distribution.
This study aimed to evaluate the occurrence of microbial contamination in food keeping freezers in some local markets in Baghdad city/ Iraq, as well as the contamination of the hands of workers in markets, and the possibility of contamination caused by the transport of food. 30 samples of snow ice found in food keeping freezers in local markets was randomly collected, and 30 swabs from workers hands were taken from the same markets at the same time. Microbiological examination of ice samples was conducted as well as the hands of workers’swabs, and the bacteria were isolated and diagnosed through microbiological and biochemical tests followed. Microbial test results showed some isolates of bacteria in ice samples obtained from food keep
... Show MoreWe propose a system to detect human faces in color images type BMP by using two methods RGB and YCbCr to determine which is the best one to be used, also determine the effect of applying Low pass filter, Contrast and Brightness on the image. In face detection we try to find the forehead from the binary image by scanning of the image that starts in the middle of the image then precedes by finding the continuous white pixel after continuous black pixel and the maximum width of the white pixel by scanning left and right vertically(sampled w) if the new width is half the previous one the scanning stops.
Peer-Reviewed Journal
Ovako Working Postures Analyzing System (OWAS) is a widely used method for studying awkward working postures in workplaces. This study with OWAS, analyzed working postures for manual material handling of laminations at stacking workstation for water pump assembly line in Electrical Industrial Company (EICO) / Baghdad. A computer program, WinOWAS, was used for the study. In real life workstation was found that more than 26% of the working postures observed were classified as either AC2 (slightly harmful), AC3 (distinctly harmful). Postures that needed to be corrected soon (AC3) and corresponding tasks, were identified. The most stressful tasks observed were grasping, handling, and positioning of the laminations from workers. The construct
... Show More