Malaria is a curative disease, with therapeutics available for patients, such as drugs that can prevent future malaria infections in countries vulnerable to malaria. Though, there is no effective malaria vaccine until now, although it is an interesting research area in medicine. Local descriptors of blood smear image are exploited in this paper to solve parasitized malaria infection detection problem. Swarm intelligence is used to separate the red blood cells from the background of the blood slide image in adaptive manner. After that, the effective corner points are detected and localized using Harris corner detection method. Two types of local descriptors are generated from the local regions of the effective corners which are Gabor based features and color based features. The extracted features are finally fed to Deep Belief Network (DBN) for classification purpose. Different tests were performed and different combinations of feature types are attempted. The achieved results showed that when using combined vectors of local descriptors, the system gives the desired accuracy which is 100%. The achieved result demonstrates the effectiveness of using local descriptors in solving malaria infection detection problem.
Result of studying (61) urine samples collected from students department of Biology in the College of Education-Tikrit University and the people who hold signs and symptoms of urinary tract infections with those who do not have any signs or symptoms through a questionnaire has been with the collection of samples, and the total cases were infected (39 ) cases, a rate (63.9%) distributed (28) cases a female (68.2%) and male (11) cases event rate (55%), while the distribution of positive cases among age groups have emerged group (20-22 years) is the highest rate (56%) females. The results of urine cultures accompany the presence of different types of bacteria sick and E.coli bacteria is the highest ratios positive also it is the most comm
... Show MoreThe unresolved COVID‐19 pandemic considerably impacts the health services in Iraq and worldwide. Consecutive waves of mutated virus increased virus spread and further constrained health systems. Although molecular identification of the virus by polymerase chain reaction is the only recommended method in diagnosing COVID‐19 infection, radiological, biochemical, and hematological studies are substantially important in risk stratification, patient follow‐up, and outcome prediction.
This narrative review summarized the hematological changes including the blood indices, coagulative indicator
This paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that
Photoacoustic is a unique imaging method that combines the absorption contrast of light or radio frequency waves with ultrasound resolution. When the deposition of this energy is sufficiently short, a thermo-elastic expansion takes place whereby acoustic waves are generated. These waves can be recorded and stored to construct an image. This work presents experimental procedure of laser photoacoustic two dimensional imaging to detect tumor embedded within normal tissue. The experimental work is accomplished using phantoms that are sandwiched from fish heart or blood sac (simulating a tumor) 1-14mm mean diameter embedded within chicken breast to simulate a real tissue. Nd: YAG laser of 1.064μm and 532nm wavelengths, 10ns pulse duration, 4
... Show MoreShadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensit
... Show MoreThe study aimed to estimate the content of lead and determine the quality of the internal coating of metal cans through electrical conductivity as well as to determine the accuracy of the information card for some types of canned food that available in local markets. The information card test showed that all of these samples contained the name of the food, trade mark, country origin, weight, and components, as was indicated by the company producing in all of them except for the C12 sample which was otherwise, and the batch number was mentioned in all samples except for the C3 and C17 which was not clear and not mentioned in the C21, and the validity period was observed (produce and fini
... Show More