Tight oil reservoirs have been a concerned of the oil industry due to their substantial influence on oil production. Due to their poor permeability, numerous problems are encountered while producing from tight reservoirs. Petrophysical and geomechanical rock properties are essential for understanding and assessing the fracability of reservoirs, especially tight reservoirs, to enhance permeability. In this study, Saadi B reservoir in Halfaya Iraqi oil field is considered as the main tight reservoir. Petrophysical and geomechanical properties have been estimated using full-set well logs for a vertical well that penetrates Saadi reservoir and validated with support of diagnostic fracture injection test data employing standard equations and correlations. Subsequently, breakdown pressures are computed, and two fracturing models have been developed. The petrophysical analysis infers that the reservoir has poor properties, while the findings of the geomechanical properties indicate that the reservoir is brittle with ductile rock strata. These ductile strata underlay and overlay more brittle formations than the reservoir. The results from diagnostic fracture injection test DFIT are quite consistent with well logs results. The breakdown pressure reflects that this reservoir could easily be fractured by inserting pressure equal to 6250 psi. However, the fracturing model design parameters manipulates the fracture height confinement within Saadi Formation and its propagation to Hartha and/or Tanuma Formations. Therefore, the employment of petrophysical and geomechanical properties of the rocks assists in understanding the fracability of the formation and demonstrating the orientation and the fracture propagation direction.
Carbonate reservoirs are an essential source of hydrocarbons worldwide, and their petrophysical properties play a crucial role in hydrocarbon production. Carbonate reservoirs' most critical petrophysical properties are porosity, permeability, and water saturation. A tight reservoir refers to a reservoir with low porosity and permeability, which means it is difficult for fluids to move from one side to another. This study's primary goal is to evaluate reservoir properties and lithological identification of the SADI Formation in the Halfaya oil field. It is considered one of Iraq's most significant oilfields, 35 km south of Amarah. The Sadi formation consists of four units: A, B1, B2, and B3. Sadi A was excluded as it was not filled with h
... Show MoreThe petrophysical characteristics of five wells drilled into the Sa'di Formation in the Halfaya oil field were evaluated using IP software to determine a reservoir and explore hydrocarbon reserve zones. The lithology was evaluated using the M-N cross-plot method. The diagram showed that the Sa'di Formation was mainly composed of calcite (represented by the limestone region) is the main mineral in the Sa′di Reservoir. Using a density-neutron cross plot to identify the lithology showed that the formation mainly consists of limestone with minor shale. Gamma-ray logs were employed to calculate the shale quantity in each well. The porosity at weak hole intervals was calculated using a sonic log and neutron-density log at the reservoir
... Show MoreThe evaluation of subsurface formations as applied to oil well drilling started around 50 years ago. Generally, the curent review articule includes all methods for coring, logging, testing, and sampling. Also the methods for deciphering logs and laboratory tests that are relevant to assessing formations beneath the surface, including a look at the fluids they contain are discussed. Casing is occasionally set in order to more precisely evaluate the formations; as a result, this procedure is also taken into account while evaluating the formations. The petrophysics of reservoir rocks is the branch of science interested in studying chemical and physical properties of permeable media and the components of reservoir rocks which are associated
... Show MoreThis paper presents a comparative study between different oil production enhancement scenarios in the Saadi tight oil reservoir located in the Halfaya Iraqi oil field. The reservoir exhibits poor petrophysical characteristics, including medium pore size, low permeability (reaching zero in some areas), and high porosity of up to 25%. Previous stimulation techniques such as acid fracturing and matrix acidizing have yielded low oil production in this reservoir. Therefore, the feasibility of hydraulic fracturing stimulation and/or horizontal well drilling scenarios was assessed to increase the production rate. While horizontal drilling and hydraulic fracturing can improve well performance, they come with high costs, often accounting for up t
... Show MoreThis study is achieved in the local area of the Eridu oil field, where the Mishrif Formation is considered the main productive reservoir. The Mishrif Formation was deposited during the Cretaceous period in the secondary sedimentary cycle (Cenomanian-Early Turonian as a part of the Wasia Group, a carbonate succession widespread throughout the Arabian Plate.
The Mishrif Formation already have been evaluated in terms of depositional environments and their diagenetic processes. Here, it will test the previous conclusions with petrophysical properties delineated by using well logging. The results show there is a fully matching with two reservoir units (MA and MB). Dissolution and primary porosity are responsible for f
... Show MorePetrophysical properties of Mishrif Formation at Amara oil field is determined
from interpretation of open log data of (Am-1, 2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12
and13) wells. These properties include the total, the effected and the secondary
porosity, as well as the moveable and the residual oil saturation in the invaded and
uninvaded zones. According to petrophysical properties it is possible to divided
Mishrif Formation which has thickness of a proximately 400 m, into seven main
reservoir units (MA, MB11, MB12, MB13, MB21, MC1, MC2) . MA is divided into
four secondary reservoir units , MB11 is divided into five secondary reservoir units ,
MB12 is divided into two secondary reservoir units , MB13 is divided into
This research was aimed to determine the petrophysical properties (porosity, permeability and fluid saturation) of a reservoir. Petrophysical properties of the Shuiaba Formation at Y field are determined from the interpretation of open hole log data of six wells. Depending on these properties, it is possible to divide the Shuiaba Formation which has thickness of a proximately 180-195m, into three lithological units: A is upper unit (thickness about 8 to 15 m) involving of moderately dolomitized limestones; B is a middle unit (thickness about 52 to 56 m) which is composed of dolomitic limestone, and C is lower unit ( >110 m thick) which consists of shale-rich and dolomitic limestones. The results showed that the average formation water
... Show MoreIncreasing hydrocarbon recovery from tight reservoirs is an essential goal of oil industry in the recent years. Building real dynamic simulation models and selecting and designing suitable development strategies for such reservoirs need basically to construct accurate structural static model construction. The uncertainties in building 3-D reservoir models are a real challenge for such micro to nano pore scale structure. Based on data from 24 wells distributed throughout the Sadi tight formation. An application of building a 3-D static model for a tight limestone oil reservoir in Iraq is presented in this study. The most common uncertainties confronted while building the model were illustrated. Such as accurate estimations of cut-off perm
... Show MoreIncreasing hydrocarbon recovery from tight reservoirs is an essential goal of oil industry in the recent years. Building real dynamic simulation models and selecting and designing suitable development strategies for such reservoirs need basically to construct accurate structural static model construction. The uncertainties in building 3-D reservoir models are a real challenge for such micro to nano pore scale structure. Based on data from 24 wells distributed throughout the Sadi tight formation. An application of building a 3-D static model for a tight limestone oil reservoir in Iraq is presented in this study. The most common uncertainties confronted while building the model were illustrated. Such as accurate estimations of cut-off permeab
... Show MoreIncreasing hydrocarbon recovery from tight reservoirs is an essential goal of oil industry in the recent years. Building real dynamic simulation models and selecting and designing suitable development strategies for such reservoirs need basically to construct accurate structural static model construction. The uncertainties in building 3-D reservoir models are a real challenge for such micro to nano pore scale structure. Based on data from 24 wells distributed throughout the Sadi tight formation. An application of building a 3-D static model for a tight limestone oil reservoir in Iraq is presented in this study. The most common uncertainties confronted while building the model were illustrated. Such as accurate estimations of cut-off
... Show More