Gaslift reactors are employed in several bioapplications due to their characteristics of cost-effectiveness and high efficiency. However, the nutrient and thermal gradient is one of the obstacles that stand in the way of its widespread use in biological applications. The diagnosis, analysis, and tracking of fluid paths in external draft tube gaslift bioreactor-type are the main topics of the current study. Several parameters were considered to assess the mixing efficiency such as downcomer-to-rizer diameter ratio (Ded/Dr), the position of the diffuser to the height of bioreactor ratio (Pd/Lr), and gas bubble size (Db). The multiple regression of liquid velocity indicates the optimal setting: Ded/Dr is (0.5), Pd/Lr is (0.02), and Db is (400) um. However, for technical and operational reasons, it was necessary to make some changes in the optimal values obtained from the numerical equations. The study also revealed that the size of gas bubbles is the characteristic that has the greatest influence on the dynamic efficiency of the fluid inside the bioreactor, since, reducing the bubble size by half can enhance the improvement rate in the circulation of the liquid up to 35%.
The research aims to study and analysis of concurrent engineering (CE) and cost optimization (CO), and the use of concurrent engineering inputs to outputs to improve the cost, and the statement of the role of concurrent engineering in improving the quality of the product, and achieve savings in the design and manufacturing time and assembly and reduce costs, as well as employing some models to determine how much the savings in time, including the model (Lexmark) model (Pert) to determine the savings in design time for manufacturing and assembly time.
To achieve the search objectives, the General Company for Electrical and Electronic Industries \ Refrigerated Engine
... Show MoreThe objective Effect of Internal and External Environment and its Psychological & Practical Reflection on the Political Decision-Making Process
A theoretical and experimental investigation was carried out to study the behavior of a two-phase closed thermosyphon loop (TPCTL) during steady-state operation using different working fluids. Three working fluids were investigated, i.e., distilled water, methanol, and ethanol. The TPCTL was constructed from an evaporator, condenser, and two pipelines (riser and downcomer). The driving force is the difference in pressure between the evaporator and condenser sections and the fluid returns to the heating section by gravity. In this study, the significant parameters used in the experiments were filling ratios (FR%) of 50%, 75%, and 100% and heat-input range at the evaporator section of 215-860.2 W. When the loop reached to
... Show MoreArtificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing artificial TABU algorithm to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as sport, chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement.
The research aims to measure, assess and evaluate the efficiency of the directorates of Anbar Municipalities by using the Data Envelopment Analysis method (DEA). This is because the municipality sector is consider an important sector and has a direct contact with the citizen’s life. Provides essential services to citizens. The researcher used a case study method, and the sources of information collection based on data were monthly reports, the research population is represented by the Directorate of Anbar Municipalities, and the research sample consists of 7 municipalities which are different in terms of category and size of different types. The most important conclusion reached by the research i
... Show MoreThe unsteady state laminar mixed convection and radiation through inclined
cylindrical annulus is investigated numerically. The two heat transfer mechanisms of
convection and radiation are treated independently and simultaneously. The outer
cylinder was kept at a constant temperature while the inner cylinder was heated with
constant heat flux. The study involved numerical solution of the governing equations
which are continuity, momentum and energy equations using finite difference method
(FDM), where the body fitted coordinate system (BFC) was used to generate the grid
mesh for computational plane. A computer program (Fortran 90) was built to calculate
the bulk Nusselt number (Nub) after reaching steady state con
In this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method
A ‘locking-bolt’ demountable shear connector (LBDSC) is proposed to facilitate the deconstruction and reuse of steel-concrete composite structures, in line with achieving a more sustainable construction design paradigm. The LBDSC is comprised of a grout-filled steel tube and a geometrically compatible partially threaded bolt. The latter has a geometry that ‘locks’ the bolt in compatible holes predrilled on the steel flange and eliminates initial slip and construction tolerance issues. The structural behaviour of the LBDSC is evaluated through nine pushout tests using a horizontal test setup. The effects of the tube thickness, strength of concrete slab, and strength of infilled grout on the shear resistance, initial stiffness, and du
... Show MoreThis work is concerned with the design and performance evaluation of a shell and double concentric tubes heat exchanger using Solid Works and ANSY (Computational Fluid Dynamics).
Computational fluid dynamics technique which is a computer-based analysis is used to simulate the heat exchanger involving fluid flow, heat transfer. CFD resolve the entire heat exchanger in discrete elements to find: (1) the temperature gradients, (2) pressure distribution, and (3) velocity vectors. The RNG k-ε model of turbulence is used to determining the accurate results from CFD.
The heat exchanger design for this work consisted of a shell and eight double concentric tubes. The number of inlets are three and that of o
... Show More