Gaslift reactors are employed in several bioapplications due to their characteristics of cost-effectiveness and high efficiency. However, the nutrient and thermal gradient is one of the obstacles that stand in the way of its widespread use in biological applications. The diagnosis, analysis, and tracking of fluid paths in external draft tube gaslift bioreactor-type are the main topics of the current study. Several parameters were considered to assess the mixing efficiency such as downcomer-to-rizer diameter ratio (Ded/Dr), the position of the diffuser to the height of bioreactor ratio (Pd/Lr), and gas bubble size (Db). The multiple regression of liquid velocity indicates the optimal setting: Ded/Dr is (0.5), Pd/Lr is (0.02), and Db is (400) um. However, for technical and operational reasons, it was necessary to make some changes in the optimal values obtained from the numerical equations. The study also revealed that the size of gas bubbles is the characteristic that has the greatest influence on the dynamic efficiency of the fluid inside the bioreactor, since, reducing the bubble size by half can enhance the improvement rate in the circulation of the liquid up to 35%.
This research provides a study of the virtual museums features and characteristics and contributes to the recognition of the diversity of visual presentation methods, as the virtual museums give the act of participation and visual communication with programs at an open time, so that it would contribute to reflection, thinking and recording notes, developing the actual and innovative skills through seeing the environments. The study has been divided into two sections the first one is virtual museum techniques. The techniques were studied to reach the public and are used remotely by the services of personal computers or smart phones being virtual libraries that store images and information that was formed and built in a digital way and how
... Show MoreThe aim of the research is to identify the extent of the ability to ensure the integrated reports by the auditor in verifying the credibility of these reports, and their implications for the benefit of all parties dealing with the economic unit, as well as measuring the impact of the assurance procedures followed by the auditors and their role in confirming these reports.
The research methodology was designed after studying the previous literature related to the research variables, and then the relationship between these variables was tested, through the use of a questionnaire list. A questionnaire targeting the community of auditors in the local environment, and the results of the study wer
... Show MoreA twisted-fin array as an innovative structure for intensifying the charging response of a phase-change material (PCM) within a shell-and-tube storage system is introduced in this work. A three-dimensional model describing the thermal management with charging phase change process in PCM was developed and numerically analyzed by the enthalpy-porosity method using commercial CFD software. Efficacy of the proposed structure of fins for performing better heat communication between the active heating surface and the adjacent layers of PCM was verified via comparing with conventional longitudinal fins within the same design limitations of fin material and volume usage. Optimization of the fin geometric parameters including the pitch, numb
... Show MoreIn this paper, an experimental analysis of conventional air-cooled and microchannel condensers in automotive vapor compression refrigeration cycle concerning heat transfer coefficient and energy using R134a as a refrigerant was presented. The performance of two condensers and cycles tested regarding ambient temperature which it was varied from 40oC to 65oC, while the indoor temperature and load have been set to be 23oC and 2200 W respectively. Results showed that the microchannel condenser has 224 % and 77 % higher refrigerant side and air side heat transfer coefficient respectively than the coefficients of the conventional condenser. Thus, the COP, in case of using the microchannel
... Show MoreThis study examines experimentally the performance of a horizontal triple concentric tube heat exchanger TCTHE made of copper metal using water as cooling fluid and oil-40 as hot fluid. Hot fluid enters the inner annular tube of the TCTHE in a direction at a temperature of 50, 60 and 70 oC and a flow rate of 20 l/hr. On the other hand, the cooling fluid enters the inner tube and the outer annular tube in the reverse direction (counter current flow) at a temperature of 25 oC and flow rates of 10, 15, 20, 25, 30 and 35 l/hr. The TCTHE is composed of three copper tubes with outer diameters of 34.925 mm, 22.25 mm, and 9.525 mm, and thicknesses of 1.27 mm, 1.143 mm, and 0.762 mm, respectively. TCTHE tube's length was 670
... Show MoreIn this work an experimental study is performed to evaluate the thermal performance
of locally made closed loop solar hot water system using a shell and helical coiled tube
heat exchanger as a storage tank. Several measurements are taken include inlet and outlet
temperatures of both collectors and supply water and temperature distribution within the
storage tank. This is beside the water flow rate in both collectors and load cycle. The
main parameters of the system are obtained.
    Heat exchanger is an important device in the industry for cooling or heating process. To increase the efficiency of heat exchanger, nanofluids are used to enhance the convective heat . transfer relative to the base fluid. - Al2O3/water nanofluid is used as cold stream in the shell and double concentric tube heat exchanger counter current to the hot stream basis oil. These nanoparticles were of particle size of 40 nm and it was mixed with a base fluid (water) at volume
concentrations of 0.002% and 0.004%. The results showed that each of Nusselt number and overall heat transfer coefficient increased as nanofluid concentrations increased. The pressure drop of nanofluid increased slightly than the base fluid because 
In the hybrid coolingsolar systems , a solar collectoris used to convertsolar energy intoheat sourcein order to super heat therefrigerant leave thecompressor,andthisprocess helpsin the transformation ofrefrigerant state from gaseous statetothe liquid statein upper two-thirdsof thecondenserinstead of the lower two-thirdssuchas in thetraditional air-conditioning systems and this willreduce theenergyneeded torun the process ofcooling.In this research two hybrid air-conditioning system with an evacuated tube solar collector were used, therefrigerant was R22 and the capacity was 2 tons each.The tilt angle of the evacuated tube solar collector was changed and the solar collector fluid was replaced into oil instead of water.A comparison wasi
... Show MoreThe maximization of the net present value of the investment in oil field improvements is greatly aided by the optimization of well location, which plays a significant role in the production of oil. However, using of optimization methods in well placement developments is exceedingly difficult since the well placement optimization scenario involves a large number of choice variables, objective functions, and restrictions. In addition, a wide variety of computational approaches, both traditional and unconventional, have been applied in order to maximize the efficiency of well installation operations. This research demonstrates how optimization approaches used in well placement have progressed since the last time they were examined. Fol
... Show More