This paper presents ABAQUS simulations of fully encased composite columns, aiming to examine the behavior of a composite column system under different load conditions, namely concentric, eccentric with 25 mm eccentricity, and flexural loading. The numerical results are validated with the experimental results obtained for columns subjected to static loads. A new loading condition with a 50 mm eccentricity is simulated to obtain additional data points for constructing the interaction diagram of load-moment curves, in an attempt to investigate the load-moment behavior for a reference column with a steel I-section and a column with a GFRP I-section. The result comparison shows that the experimental data align closely with the simulation results regarding the ultimate strength, deformation, and failure modes, thereby validating the accuracy of the considered models. On the other hand, the numerical results of the column specimens under 50 mm eccentric load demonstrated that, in that case, the ultimate load of the columns decreased. The capacity of the reference column, a column with steel I-section, and a column with GFRP I-section decreased to 67%, 63%, and 64%, respectively compared with the columns tested under concentric load. The analytical investigation predicted the load-carrying capacity and bending moment capacity of the specimens with good accuracy. Based on the experimental curves, and the high strength found in the specimens that use the steel I- and GFRP I-sections, a good agreement between the numerical simulation and the experimental results was noticed.
Steel fiber aluminum matrix composites were prepared by atomization technique. Different air atomization conditions were considered; which were atomization pressure and distance between sample and nozzle. Tensile stress properties were studied. XRF and XRD techniques were used to study the primary compositions and the structure of the raw materials and the atomized products. The tensile results showed that the best reported tensile strength observed for an atomization pressure equal to 4 mbar and sample to nozzle distance equal to 12 cm. Young modulus results showed that the best result occurred with an air atomization pressure equal to 8 mbar and sample to nozzle distance equal to 16cm
Improving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application
The study investigated the behaviour of asphalt concrete mixes for aggregate gradations, according to the Iraqi specification using the Bailey method designed by an Excel spreadsheet. In mixing aggregates with varying gradations (coarse and fine aggregate), The Bailey method is a systematic methodology that offers aggregate interlocking as the backbone of the framework and a controlled gradation to complete the blends. Six types of gradation are used according to the bailey method considered in this study. Two-course prepared Asphalt Concrete Wearing and Asphalt Concrete binder, the Nominal Maximum Aggregate Sizes (NMAS) of the mixtures are 19 and 12.5 mm, respectively. The total number of specimens was 240 for both layers (15 samp
... Show MoreNasiriyah oilfield is located in the southern part of Iraq. It represents one of the promising oilfields. Mishrif Formation is considered as the main oil-bearing carbonate reservoir in Nasiriyah oilfield, containing heavy oil (API 25o(. The study aimed to calculate and model the petrophysical properties and build a three dimensional geological model for Mishrif Formation, thus estimating the oil reserve accurately and detecting the optimum locations for hydrocarbon production.
Fourteen vertical oil wells were adopted for constructing the structural and petrophysical models. The available well logs data, including density, neutron, sonic, gamma ray, self-potential, caliper and resistivity logs were used to calculate the
... Show MoreIn this research, the structural behavior of reinforced concrete columns made of normal and hybrid reactive powder concrete (hybrid by steel and polypropylene fibers) subjected to chloride salts with concentration was 8341.6 mg/l. The study consists of two parts, the first one is experimental study and the second one is theoretical analysis. Three main variables were adopted in the experimental program; concrete type, curing type and loading arrangement. Twenty (120x120x1200) mm columns were cast and tested depending on these variables. The samples were reinforced using two different bars; Ø8 for ties and Ø12 with minimum longitudinal reinforcement (0.01Ag). The specimens were divided into two main groups based o
... Show MoreAeroelastic flutter in aircraft mechanisms is unavoidable, essentially in the wing and control surface. In this work a three degree-of-freedom aeroelastic wing section with trailing edge flap is modeled numerically and theoretically. FLUENT code based on the steady finite volume is used for the prediction of the steady aerodynamic characteristics (lift, drag, pitching moment, velocity, and pressure distribution) as well as the Duhamel formulation is used to model the aerodynamic loads theoretically. The system response (pitch, flap pitch and plunge) was determined by integration the governing equations using MATLAB with a standard Runge–Kutta algorithm in conjunction with Henon’s method. The results are compared with
... Show MoreThis paper presents experimental results regarding the behaviours of eight simply supported partially prestressed concrete beams with internally unbonded tendons, focusing particularly on the effect of three different variables: concrete compressive strength,
Fiber‐reinforced elastic laminated composites are extensively used in several domains owing to their high specific stiffness and strength and low specific density. Several studies were performed to ascertain the factors that affect the composite plates’ dynamic properties. This study aims to derive a mathematical model for the dynamic response of the processed composite material in the form of an annular circular shape made of polyester/E‐glass composite. The mathematical model was developed based on modified classical annular circular plate theory under dynamic loading, and all its formulas were solved using MATLAB 2023. The mathematical model was also verified with real experimental work involving the vibration test of the f
... Show More