This paper study two stratified quantile regression models of the marginal and the conditional varieties. We estimate the quantile functions of these models by using two nonparametric methods of smoothing spline (B-spline) and kernel regression (Nadaraya-Watson). The estimates can be obtained by solve nonparametric quantile regression problem which means minimizing the quantile regression objective functions and using the approach of varying coefficient models. The main goal is discussing the comparison between the estimators of the two nonparametric methods and adopting the best one between them
In this research, we use fuzzy nonparametric methods based on some smoothing techniques, were applied to real data on the Iraqi stock market especially the data about Baghdad company for soft drinks for the year (2016) for the period (1/1/2016-31/12/2016) .A sample of (148) observations was obtained in order to construct a model of the relationship between the stock prices (Low, high, modal) and the traded value by comparing the results of the criterion (G.O.F.) for three techniques , we note that the lowest value for this criterion was for the K-Nearest Neighbor at Gaussian function .
الوصف In this time, most researchers toward about preparation of compounds according to green chemistry. This research describes the preparation of 2-fluoro-5-(substituted benzylideneamino) benzonitrile under reflux and microwave methods. Six azomethine compounds (B1-6) were synthesized by two methods under reflux and assisted microwave with the comparison between the two methods. Reflux method was prepared of azomethine (B1-6) by reaction of 5-amino-2-fluorobenzonitrile with some aldehyde derivatives with (50–100) mL of absolute ethanol and some quantity of GAA and time is limited between (2–5) hours with a yield between (60–70) percent with recrystallization for appropriate solvents. But the microwave-assisted method was synthe
... Show MoreIn this time, most researchers toward about preparation of compounds according to green chemistry. This research describes the preparation of 2-fluoro-5-(substituted benzylideneamino) benzonitrile under reflux and microwave methods. Six azomethine compounds (B1-6) were synthesized by two methods under reflux and assisted microwave with the comparison between the two methods. Reflux method was prepared of azomethine (B1-6) by reaction of 5-amino-2-fluorobenzonitrile with some aldehyde derivatives with (50–100) mL of absolute ethanol and some quantity of GAA and time is limited between (2–5) hours with a yield between (60–70) percent with recrystallization for appropriate solvents. But the microwave-assisted method was synthesized of co
... Show MoreThe area of character recognition has received a considerable attention by researchers all over the world during the last three decades. However, this research explores best sets of feature extraction techniques and studies the accuracy of well-known classifiers for Arabic numeral using the Statistical styles in two methods and making comparison study between them. First method Linear Discriminant function that is yield results with accuracy as high as 90% of original grouped cases correctly classified. In the second method, we proposed algorithm, The results show the efficiency of the proposed algorithms, where it is found to achieve recognition accuracy of 92.9% and 91.4%. This is providing efficiency more than the first method.
This research aims to provide insight into the Spatial Autoregressive Quantile Regression model (SARQR), which is more general than the Spatial Autoregressive model (SAR) and Quantile Regression model (QR) by integrating aspects of both. Since Bayesian approaches may produce reliable estimates of parameter and overcome the problems that standard estimating techniques, hence, in this model (SARQR), they were used to estimate the parameters. Bayesian inference was carried out using Markov Chain Monte Carlo (MCMC) techniques. Several criteria were used in comparison, such as root mean squared error (RMSE), mean absolute percentage error (MAPE), and coefficient of determination (R^2). The application was devoted on dataset of poverty rates acro
... Show MoreAbstract
The problem of missing data represents a major obstacle before researchers in the process of data analysis in different fields since , this problem is a recurrent one in all fields of study including social , medical , astronomical and clinical experiments .
The presence of such a problem within the data to be studied may influence negatively on the analysis and it may lead to misleading conclusions , together with the fact that these conclusions that result from a great bias caused by that problem in spite of the efficiency of wavelet methods but they are also affected by the missing of data , in addition to the impact of the problem of miss of accuracy estimation
... Show MoreThe general budget is usually linked to the role of the state in public life and economic activity, whether this role is neutral or interventionist and thus reflects the general objectives that the state seeks to achieve.
for importance of the public budget in clarifying the image of the political state philosophy and its objectives it seeks to achieve on the one hand and clarifying the degree and rank it occupies in the ladder of development among the other countries. This study is intended to highlight the concepts of the general budget and how its concept has evolved since the Middle Ages. Of the importance of the general budget in Iraq was not based on scientific and objective and then the study
... Show MoreThe logistic regression model is an important statistical model showing the relationship between the binary variable and the explanatory variables. The large number of explanations that are usually used to illustrate the response led to the emergence of the problem of linear multiplicity between the explanatory variables that make estimating the parameters of the model not accurate.
... Show More