The composites were manufactured and study the effect of addition of filler (nanoparticles SiO2 treated with silane) at different weight ratios (1, 2, 3, 4 and 5) %, on electrical, mechanical and thermal properties. Materials were mixed with each other using an ultrasound, and then pour the mixture into the molds to suit all measurements. The electrical characteristics were studied within a range of frequencies (50-1M) Hz at room temperature, where the best results were shown at the fill ratio (1%), and thermal properties at (X=3 %), the mechanical properties at the filler ratio (2%).
Purpose: To determine the impact of service encounter in stimulating voluntary customer behaviors.
- Approach / methodology: It was selected a sample of customers Bank Iraqi Trade (TBI) was (105) individual, using a questionnaire designed in the light of previous studies, was drafted scale and tested in the light of a group of statistical methods developed (reliability coefficient, reliability coefficient composite, convergence). Then test hypotheses through structural equation modeling.
- Results: The behaviors and characteristics of the service provider in effect urged bank customers to perform voluntary extra, as the service environment service encounter
Single-photon detection concept is the most crucial factor that determines the performance of quantum key distribution (QKD) systems. In this paper, a simulator with time domain visualizers and configurable parameters using continuous time simulation approach is presented for modeling and investigating the performance of single-photon detectors operating in Gieger mode at the wavelength of 830 nm. The widely used C30921S silicon avalanche photodiode was modeled in terms of avalanche pulse, the effect of experiment conditions such as excess voltage, temperature and average photon number on the photon detection efficiency, dark count rate and afterpulse probability. This work shows a general repeatable modeling process for significant perform
... Show MoreAbstract
For sparse system identification,recent suggested algorithms are
-norm Least Mean Square (
-LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named
-ZA-LMS,
Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show MoreMonaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreThe purpose of this paper is to develop a hybrid conceptual model for building information modelling (BIM) adoption in facilities management (FM) through the integration of the technology task fit (TTF) and the unified theory of acceptance and use of technology (UTAUT) theories. The study also aims to identify the influence factors of BIM adoption and usage in FM and identify gaps in the existing literature and to provide a holistic picture of recent research in technology acceptance and adoption in the construction industry and FM sector.
Reinforced concrete slabs are one of the most important and complicated elements of a building. For supported edges slabs, if the ratio of long span to short span is equal or less than two then the slab is considered as two-way slab otherwise is consider as one-way slab. Two-way reinforced concrete slabs are common in use in reinforced concrete buildings due to geometrically arrangement of columns suggested by architects who prefer a symmetric distribution of columns in their plans. Elastic theory is usually used for analysis of concrete slabs. However, for several reasons design methods based on elastic principles are limited in their function. Correspondingly, limit state analysis o
Background: Opportunistic viral infections make an important threat to renal transplantation recipients (RTRs), and with the use of more intense newly-developed immunosuppressive drugs; the risk of renal allograft loss due to reactivation of these viruses has increased considerably. At the top priority of these viruses lie BK polyomavirus (BKV) and human cytomegalovirus (CMV). Reactivation of these viruses in these chronically immunosuppressed RTRs can lead to renal impairment and subsequently allograft loss, unless early detected and properly treated. Objectives: The study aimed to detect and quantify plasma viral load of BKV and CMV in RTRs using quantitative real time PCR (qRT-PCR), in order to study the prevalence of these two viruses i
... Show MoreText based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.
... Show More