The electrical activity of the heart and the electrocardiogram (ECG) signal are fundamentally related. In the study that has been published, the ECG signal has been examined and used for a number of applications. The monitoring of heart rate and the analysis of heart rhythm patterns, the detection and diagnosis of cardiac diseases, the identification of emotional states, and the use of biometric identification methods are a few examples of applications in the field. Several various phases may be involved in the analysis of electrocardiogram (ECG) data, depending on the type of study being done. Preprocessing, feature extraction, feature selection, feature modification, and classification are frequently included in these stages. Every stage must be finished in order for the analysis to go smoothly. Additionally, accurate success measures and the creation of an acceptable ECG signal database are prerequisites for the analysis of electrocardiogram (ECG) signals. Identification and diagnosis of various cardiac illnesses depend heavily on the ECG segmentation and feature extraction procedure. Electrocardiogram (ECG) signals are frequently obtained for a variety of purposes, including the diagnosis of cardiovascular conditions, the identification of arrhythmias, the provision of physiological feedback, the detection of sleep apnea, routine patient monitoring, the prediction of sudden cardiac arrest, and the creation of systems for identifying vital signs, emotional states, and physical activities. The ECG has been widely used for the diagnosis and prognosis of a variety of heart diseases. Currently, a range of cardiac diseases can be accurately identified by computerized automated reports, which can then generate an automated report. This academic paper aims to provide an overview of the most important problems associated with using deep learning and machine learning to diagnose diseases based on electrocardiography, as well as a review of research on these techniques and methods and a discussion of the major data sets used by researchers.
Massive multiple-input multiple-output (m-MIMO) is considered as an essential technique to meet the high data rate requirements of future sixth generation (6G) wireless communications networks. The vast majority of m-MIMO research has assumed that the channels are uncorrelated. However, this assumption seems highly idealistic. Therefore, this study investigates the m-MIMO performance when the channels are correlated and the base station employs different antenna array topologies, namely the uniform linear array (ULA) and uniform rectangular array (URA). In addition, this study develops analyses of the mean square error (MSE) and the regularized zero-forcing (RZF) precoder under imperfect channel state information (CSI) and a realist
... Show MoreThis study is concerned look at the role of satellite channels in the dissemination of
consumer culture that has become part of our everyday lives , which is a dangerous
phenomenon on society , so the study is aimed at introducing the concept of consumer culture
and the risks to individuals , which conducted a field study on a sample of students from the
University of Baghdad, as they represent an important category of the society they are a class
of young people to get to know the impact of satellite television on them through their various
programs and serials, films and ads may develop consumer culture they have , including in
respect of ideas and information , where the questionnaire was developed to ensure diffe
This study aims to study the inherited occupations which are considered to be a cultural, civilized and social legacy that effected by the Prevailing social and economic circumstances in the Iraqi society .
The study aimed to achieve several goals, including:
Identify the relationship between the urbanization and inherited occupations in the old city Al-Karkh.
Identify the relationship between the ecological construction and inherited occupations in the old city Al-Karkh.
Recognize the factors and motives inherited occupations in the study area .Identify the role of inherited occupations in promoting opportunities cohesion of the family system in the study area.
The field of the study had concentrated on a sample of famili
Due to the importance of nanotechnology because of its features and applications in various fields, it has become the focus of attention of the world and researchers. In this study, the concept of nanotechnology and nanomaterials was identified, the most important methods of preparing them, as well as the preparation techniques and the most important devices used in their characterization.
Addressed this research the impact of intelligence emotional dimensions of the main(self awareness, and self-management, and social awareness, and relationship management) in the performance excellence the university(performance optimization, and strategic development) this is by middling the styles decision making which are (rational and intuitive, and dependent, and spontaneous, and avoidant), and Go search of an intellectual dilemma raise fundamental questions revolve around the search was to answer those questions through a theoretical framework for search variables first and test models of the relationship and second through the impact six hypotheses President.The objective of the research to make sure the contr
... Show MoreIn the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably
Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp
... Show More