The electrical activity of the heart and the electrocardiogram (ECG) signal are fundamentally related. In the study that has been published, the ECG signal has been examined and used for a number of applications. The monitoring of heart rate and the analysis of heart rhythm patterns, the detection and diagnosis of cardiac diseases, the identification of emotional states, and the use of biometric identification methods are a few examples of applications in the field. Several various phases may be involved in the analysis of electrocardiogram (ECG) data, depending on the type of study being done. Preprocessing, feature extraction, feature selection, feature modification, and classification are frequently included in these stages. Every stage must be finished in order for the analysis to go smoothly. Additionally, accurate success measures and the creation of an acceptable ECG signal database are prerequisites for the analysis of electrocardiogram (ECG) signals. Identification and diagnosis of various cardiac illnesses depend heavily on the ECG segmentation and feature extraction procedure. Electrocardiogram (ECG) signals are frequently obtained for a variety of purposes, including the diagnosis of cardiovascular conditions, the identification of arrhythmias, the provision of physiological feedback, the detection of sleep apnea, routine patient monitoring, the prediction of sudden cardiac arrest, and the creation of systems for identifying vital signs, emotional states, and physical activities. The ECG has been widely used for the diagnosis and prognosis of a variety of heart diseases. Currently, a range of cardiac diseases can be accurately identified by computerized automated reports, which can then generate an automated report. This academic paper aims to provide an overview of the most important problems associated with using deep learning and machine learning to diagnose diseases based on electrocardiography, as well as a review of research on these techniques and methods and a discussion of the major data sets used by researchers.
Background: Coronavirus disease 2019 (COVID-19) is an emerging zoonotic disease caused by the new respiratory virus SARS-CoV2. It has a tropism in the lung tissues where excess target receptors exist. Periostin plays a role in subepithelial fibrosis associated with bronchial asthma. Since the Coronavirus's target is the human respiratory system, Periostin has been recently described as a valuable new biomarker in the diagnosis and evaluation of disease in patients with COVID-19 lung involvement. Objectives: To assess the level of Periostin in the serum of COVID-19 patients and to correlate its role in disease severity and prognosis. Subjects and Methods: Periostin serum levels were measured for 63 patients attending three main COVID
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through tha
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result
... Show MoreThe interest in the intellectual capital and its development is a civilized necessity imposed by the requirements of the times and cannot imagine an advanced society in its potential productivity in poor efficiency of human capital, and features the work environment change permanently, putting the management of financial companies against a constant challenge toward coping with new developments in this changing environment and this is not taken unless owned by these companies qualified human resources and the provision of Culture organizers have, which manifested itself with the research problem by the following two questions:
- Did the intellectual capital value specific financial and
Purpose: To explore whether baseline matrix metalloproteinase (MMP)-8 level in gingival crevicular fluid (GCF) (exposure) can predict the outcome (reduction in probing pocket depth (PPD) (outcome)) of nonsurgical periodontal therapy (NSPT) (manual or ultrasonic or both) in patients with periodontitis (population/problem) after 3 months. Methods: Six databases (PubMed, Cochrane library, ProQuest, Ovid, Scopus, EBSCO) were searched for relevant articles published until 30 July 2021. Retrieved articles were passed through a three-phase filtration process on the basis of the eligibility criteria. The primary outcome was the change in PPD after 3 months. Quality of the selected articles was assessed using Cochrane Risk of Bias tool (RoB2
... Show MoreIt is widely accepted that early diagnosis of Alzheimer's disease (AD) makes it possible for patients to gain access to appropriate health care services and would facilitate the development of new therapies. AD starts many years before its clinical manifestations and a biomarker that provides a measure of changes in the brain in this period would be useful for early diagnosis of AD. Given the rapid increase in the number of older people suffering from AD, there is a need for an accurate, low-cost and easy to use biomarkers that could be used to detect AD in its early stages. Potentially, the electroencephalogram (EEG) can play a vital role in this but at present, no reliable EEG biomarker exists for early diagnosis of AD. The gradual s
... Show More
ABSTRACT:
The study aimed to identify the impact of the role of voluntary accounting disclosure in enhancing confidence in the informational content of financial reports. Correlation - Spearman to measure the degree of correlation, as well as the method of simple linear regression analysis, and the study reached several results, including: The level of enhancing the information content in the annual financial reports of the Palestinian banks listed on the Palestine Exchange under study reached the overall average (total) (94.1%), and also Voluntary Accounting Disclosure in Enhancing Confidence in the Informational Content of the List of Change in Ownership Equity of Listed
... Show More