The electrical activity of the heart and the electrocardiogram (ECG) signal are fundamentally related. In the study that has been published, the ECG signal has been examined and used for a number of applications. The monitoring of heart rate and the analysis of heart rhythm patterns, the detection and diagnosis of cardiac diseases, the identification of emotional states, and the use of biometric identification methods are a few examples of applications in the field. Several various phases may be involved in the analysis of electrocardiogram (ECG) data, depending on the type of study being done. Preprocessing, feature extraction, feature selection, feature modification, and classification are frequently included in these stages. Every stage must be finished in order for the analysis to go smoothly. Additionally, accurate success measures and the creation of an acceptable ECG signal database are prerequisites for the analysis of electrocardiogram (ECG) signals. Identification and diagnosis of various cardiac illnesses depend heavily on the ECG segmentation and feature extraction procedure. Electrocardiogram (ECG) signals are frequently obtained for a variety of purposes, including the diagnosis of cardiovascular conditions, the identification of arrhythmias, the provision of physiological feedback, the detection of sleep apnea, routine patient monitoring, the prediction of sudden cardiac arrest, and the creation of systems for identifying vital signs, emotional states, and physical activities. The ECG has been widely used for the diagnosis and prognosis of a variety of heart diseases. Currently, a range of cardiac diseases can be accurately identified by computerized automated reports, which can then generate an automated report. This academic paper aims to provide an overview of the most important problems associated with using deep learning and machine learning to diagnose diseases based on electrocardiography, as well as a review of research on these techniques and methods and a discussion of the major data sets used by researchers.
Background:
Multiple sclerosis is a chronic disease believed to be the result of autoimmune disorders of the central nervous system, characterised by inflammation, demyelination, and axonal transection, affecting primarily young adults. Disease modifying therapies have become widely used, and the rapid development of these drugs highlighted the need to update our knowledge on their short- and long-term safety profile.
Objective:
The study aim is to evaluate the impact of disease-modifying treatments on thyroid functions and thyroid autoantibodies with subsequent effects on the outcome of the disease.
Materials and Methods:
A retro prospective study
... Show MoreChronic renal disease (CRD) is a pathophysiologic process with multiple etiologies, resulting in the inexorable attrition of Nephron number and function and frequently leading to end-stage renal disease (ESRD). In turn, ESRD represents a clinical state or condition in which there has been an irreversible loss of endogenous renal function, of a degree sufficient to render the patient permanently dependent upon renal replacement therapy (dialysis of transplantation) in order to avoid life threatening uremia, reflecting a dysfunction of all organ systems as a result of untreated or under treated acute or chronic renal failure. The current study was involved 80 patients, the age range within 25-70 ye
... Show MoreMultiple sclerosis (MS) is a chronic, inflammatory, immune mediated disease of the central nervous system, mostly affecting young adults with mean age of 30 years, twice as high in women compared to men. The etiology of MS is not fully elucidated. MS symptoms are directly related to demyelination and axonal loss, along with other psychological symptoms, can result in functional limitations, disability and reduced quality of life (QoL). The QoL assessments in patients with a chronic disease may contribute to improving treatment and could even be of prognostic value. The goals of this study were to compare the QoL of Iraqi patients with relapsing remitting multiple sclerosis (RRMS),using three different diseas
... Show MoreMost of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B
... Show MoreObjective: To review and see the pattern of histopathological diagnoses of one year appendectomy specimens.
Methodology: This retrospective study was carried in Sulaimani Teaching Hospital over the period of one year (from 1st
of January to 31st of December 2009). All pathological reports were reviewed retrospectively for patient’s age, sex,
histopathological diagnosis and operative findings (if present). Histopathological diagnoses then were classified into
either positive or negative for acute inflammation. Any associated findings or any surgical specimen removed with the
appendix was recorded. The obtained data were analyzed by using the statistical package social sciences (SPSS) version
19; with Chi square to test
The aim of this research is to identify the role of strategic agility achieving organizational excellence in one of the formations of the Ministry of Municipalities (Dhi Qar Sewage Directorate), as important service organizations that have a key role in serving and developing the society which faced many administrative challenges and issues and as a result of the changes in the environment is continuing and accelerating, so the adoption of modern administrative concepts such as strategic Agility and knowledge of their role in achieving organizational excellence can help them in facing these changes and achieve what they aspire to. In order to achieve research objectives, two main hypotheses have been formulated. The first hypothe
... Show MoreHTH Ahmed Dheyaa Al-Obaidi,", Ali Tarik Abdulwahid', Mustafa Najah Al-Obaidi", Abeer Mundher Ali', eNeurologicalSci, 2023