Olmesartan medoxomil (OM) has low bioavailability and limited solubility. To enhance bioavailability, fast dissolving films (FDF) with mixed micelles of soluplus (SPL) and solutol HS15 (STL H15) were developed using solvent casting. The optimised formula, FM2, used polyvinyl alcohol (PVA) and showed high entrapment efficiency, rapid disintegration, and significant improvement in OM bioavailability compared to the market tablet (Olmetec®). FM2 also demonstrated stability and potential for enhanced drug delivery.
The [2-hydroxy -1,2-diphynel-ethanone oxime] was reacted with 1,2- dichloroethan to give the new ligand [H2L].this ligand was reacted with some metal ions (Co(II),Ni(II),Cu(II),Zn(II) and Cd(II) in methanol as a solvent to give a series of new (1:1)complexes of the general formula [ M(HL)]Cl ,( where : M= Co(II),Ni(II),Cu(II),Zn(II) and Cd(II)) are isolated All compounds have been characterized by spectroscopic methods [ I.R , U.V -Vis ] atomic absorption . Chloride content along with conductivity measurements. From the above data the proposed molecular structure for (Co, Cu, Ni, Zn and Cd) complexes adopting a tetrahedral structure.
The current work reports a new Schiff base [N1-benzylidenebenezene-1,2-diamine(L) = C20H16N2] has been synthesized from benzaldehyde (C6H5CHO) and O- aminoaniline (O-C6H4(NH2)2. Metal mixed ligand complexes of the Schiff base were prepared from chloride salts of Zn(II), Cd(II) and Hg(II) in ethanol and 8-hydroxyquinoline(8HQ)(C9H7NO) containing sodium hydroxide. All the complexes were characterized on the basis of their; FT-IR and U.V spectra, melting point, molar conductance, and determination of the percentage of the metal in the complexes by flame (AAS). In the all complexes, (8HQ) behaves as a bidentate ligand as primary ligand through –-OH phenolic group and –N groups of pyridine group. Also, the prepared ligand (L) was bidentate i
... Show MoreThe synthesized ligand (3-(2-amino-5-(3,4,5-tri-methoxybenzyl)pyrimidin-4-ylamino)-5,5-dimethylcyclohex-2-enone] [H1L1] was characterized via fourier transform infrared spectroscopy (FTIR), 1H, 13C – NMR, Mass spectra, (CHN analysis), UV-vis spectroscopic approaches. Analytical and spectroscopic techniques like chloride content, micro-analysis, magnetic susceptibility UV-visible, conductance, and FTIR spectra were used to identify mixed ligand complexes. Its (ML13ph) mixed ligand complexes [M= Co (II), Ni (II), Cu (II), Zn (II), and Cd (II); (H1L1) = β-enaminone ligand=L1 and (3ph) =3-aminophenol= L2]. The results demonstrate that the complexes are produced with a molar ratio of M: L1:L2 (1:1:1). To generate the appropriate compl
... Show MoreThe load shedding scheme has been extensively implemented as a fast solution for unbalance conditions. Therefore, it's crucial to investigate supply-demand balancing in order to protect the network from collapsing and to sustain stability as possible, however its implementation is mostly undesirable. One of the solutions to minimize the amount of load shedding is the integration renewable energy resources, such as wind power, in the electric power generation could contribute significantly to minimizing power cuts as it is ability to positively improving the stability of the electric grid. In this paper propose a method for shedding the load base on the priority demands with incorporating the wind po
... Show More<p>In combinatorial testing development, the fabrication of covering arrays is the key challenge by the multiple aspects that influence it. A wide range of combinatorial problems can be solved using metaheuristic and greedy techniques. Combining the greedy technique utilizing a metaheuristic search technique like hill climbing (HC), can produce feasible results for combinatorial tests. Methods based on metaheuristics are used to deal with tuples that may be left after redundancy using greedy strategies; then the result utilization is assured to be near-optimal using a metaheuristic algorithm. As a result, the use of both greedy and HC algorithms in a single test generation system is a good candidate if constructed correctly. T
... Show MoreWireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s
... Show MoreRecommender Systems are tools to understand the huge amount of data available in the internet world. Collaborative filtering (CF) is one of the most knowledge discovery methods used positively in recommendation system. Memory collaborative filtering emphasizes on using facts about present users to predict new things for the target user. Similarity measures are the core operations in collaborative filtering and the prediction accuracy is mostly dependent on similarity calculations. In this study, a combination of weighted parameters and traditional similarity measures are conducted to calculate relationship among users over Movie Lens data set rating matrix. The advantages and disadvantages of each measure are spotted. From the study, a n
... Show MoreMultilocus haplotype analysis of candidate variants with genome wide association studies (GWAS) data may provide evidence of association with disease, even when the individual loci themselves do not. Unfortunately, when a large number of candidate variants are investigated, identifying risk haplotypes can be very difficult. To meet the challenge, a number of approaches have been put forward in recent years. However, most of them are not directly linked to the disease-penetrances of haplotypes and thus may not be efficient. To fill this gap, we propose a mixture model-based approach for detecting risk haplotypes. Under the mixture model, haplotypes are clustered directly according to their estimated d