This paper reports experimental and computational fluid dynamics (CFD) modelling studies to investigate the effect of the swirl intensity on the heat transfer characteristics of conventional and swirl impingement air jets at a constant nozzle-to-plate distance ( L = 2 D). The experiments were performed using classical twisted tape inserts in a nozzle jet with three twist ratios ( y = 2.93, 3.91, and 4.89) and Reynolds numbers that varied from 4000 to 16000. The results indicate that the radial uniformity of Nusselt number (Nu) of swirl impingement air jets (SIJ) depended on the values of the swirl intensity and the air Reynolds number. The results also revealed that the SIJ that was fitted with an insert of y = 4.89, which corresponds to the swirl number Sw = 0.671, provided much more uniform local heat transfer distribution on the surface. The CFD-predicted results help to explain the experimental measurements in terms of the turbulence intensity. Furthermore, the predicted and measured local Nusselt numbers were consistent with each other.
PC-based controller is an approach to control systems with Real-Time parameters by controlling selected manipulating variable to accomplish the objectives. Shell and tube heat exchanger have been identified as process models that are inherently nonlinear and hard to control due to unavailability of the exact models’ descriptions. PC and analogue input output card will be used as the controller that controls the heat exchanger hot stream to the desired temperature.
The control methodology by using four speed pump as manipulating variable to control the temperature of the hot stream to cool to the desired temperature.
In this work, the dynamics of cross flow shell and tube heat exchanger is modeled from step changes in cold water f
The purpose of this research is to investigate the effects of rotation on heat transfer using
inclination magnetohydrodynamics for a couple-stress fluid in a non-uniform canal. When the
Reynolds number is low and the wavelength is long, math formulas are used to describe the stream
function, as well as the gradient of pressure, temperature, pressure rise and axial velocity per
wavelength, which have been calculated analytically. The many parameters in the current model
are assigned a definite set of values. It has been noticed that both the pressure rise and the pressure
gradient decrease with the rise of the rotation and couple stress, while they increase with an
increase in viscosity and Hartmann nu
Mass transfer was examined at a stationary rectangular copper electrode (cathode) by using the reduction of cupric ions as the electrochemical reaction. The influence of electrolyte temperature (25, 45, and 65 oC), and cupric ions concentration (4, 8, and 12 mM) on mass transfer coefficient were investigated by using limiting current technique. The mass transfer coefficient and hence the Sherwood number was correlated as Sh =
Abstract
This paper represents a study of the effect of the soil type, the drilling parameters and the drilling tool properties on the dynamic vibrational behavior of the drilling rig and its assessment in the drilling system. So first, an experimental drilling rig was designed and constructed to embrace the numerical work.
The experimental work included implementation of the drill-string in different types of soil with different properties according to the difference in the grains size, at different rotational speeds (RPM), and different weights on bit (WOB) (Thrust force), in a way that allows establishing the charts that correlate the vibration acceleration, the rate of penetration (ROP), and the power
... Show MoreThe behavior corrosion inhibition of aluminum alloy (Al6061) in acidic (0.1 M HCl) and saline (3.5% NaCl) solutions was investigated in the absence and the presence of expired diclofenac sodium drug (DSD) as a corrosion inhibitor. The influence of temperature and was studied using electrochemical techniques. In addition, scanning electron microscopy (SEM) was used to study the surface morphology. The results showed that DSD acted as a powerful inhibitor in acidic solutions, while a moderate influence was observed with saline one. Maximum inhibition efficiency was 99.99 and 83.32% in acidic and saline solutions at 150 ppm of DSD, respectively. Corrosion current density that obtained using electrochemical technique was increased with temperat
... Show MoreABSTRACT Background:Hydrogen absorption and related degradation in the mechanical properties of Ni-Ti based orthodontic wires has been demonstrated following exposure to fluoride prophylactic agents. This study was designed to investigate the effects of three fluoride containing agents on the load deflection characteristics of heat activated nickel titanium arch wires during unloading phase. Material and method: Eighty specimens of heat activated nickel titanium arch wires were obtained from Ortho Technology Company, half of which had a 0.016 inch round and 0.019x0.025 rectangular. Ten specimens from both wire size were immersed in one of the tested fluoride prophylactic agents (neutral sodium fluoride gel, stannous fluoride gel or phos-flu
... Show MoreThe present study explores numerically the energy storage and energy regeneration during Melting and Solidification processes in Phase Change Materials (PCM) used in Latent Heat Thermal Energy Storage (LHTES) systems. Transient two-dimensional (2-D) conduction heat transfer equations with phase change have been solved utilizing the Explicit Finite Difference Method (FDM) and Grid Generation technique. A Fortran computer program was built to solve the problem. The study included four different Paraffin's. The effects of container geometrical shape, which included cylindrical and square sections of the same volume and heat transfer area, the container volume or mass of PCM, variation of mass flow rate of heat transfer fluid (HTF), and temp
... Show MoreThe Jeribe reservoir in the Jambour Oil Field is a complex and heterogeneous carbonate reservoir characterized by a wide range of permeability variations. Due to limited availability of core plugs in most wells, it becomes crucial to establish correlations between cored wells and apply them to uncored wells for predicting permeability. In recent years, the Flow Zone Indicator (FZI) approach has gained significant applicability for predicting hydraulic flow units (HFUs) and identifying rock types within the reservoir units.
This paper aims to develop a permeability model based on the principles of the Flow Zone Indicator. Analysis of core permeability versus core porosity plot and Reservoir Quality Index (RQI) - Normalized por
... Show More