Preferred Language
Articles
/
MhZWL4cBVTCNdQwCnDzd
Experimental and Numerical Investigations of Heat Transfer Characteristics for Impinging Swirl Flow

This paper reports experimental and computational fluid dynamics (CFD) modelling studies to investigate the effect of the swirl intensity on the heat transfer characteristics of conventional and swirl impingement air jets at a constant nozzle-to-plate distance ( L = 2 D). The experiments were performed using classical twisted tape inserts in a nozzle jet with three twist ratios ( y = 2.93, 3.91, and 4.89) and Reynolds numbers that varied from 4000 to 16000. The results indicate that the radial uniformity of Nusselt number (Nu) of swirl impingement air jets (SIJ) depended on the values of the swirl intensity and the air Reynolds number. The results also revealed that the SIJ that was fitted with an insert of y = 4.89, which corresponds to the swirl number Sw = 0.671, provided much more uniform local heat transfer distribution on the surface. The CFD-predicted results help to explain the experimental measurements in terms of the turbulence intensity. Furthermore, the predicted and measured local Nusselt numbers were consistent with each other.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Experimental and Numerical Investigation for Simulation of Thermophysical Properties for Polypropylene 575 Polymer Melts in Single Screw Extruder

A numerical model for Polypropylene 575 polymer melts flow along the solid conveying screw of a single screw extruder under constant heat flux using ANSYS-FLUENT 17.2 software has been conducted. The model uses the thermophysical properties such as Viscosity, thermal conductivity, Specific heat and density of polypropylene 575 that measured as a function of temperature, and residence time data for process simulation. The numerical simulation using CFD models for single screw extruder and the polymer extrusion was analysed for parameters such as (thermal conductivity, specific heat, density and viscosity) reveals a high degree of similarity to experimental data measured. The most important outcome of this study is that geometrical, parame

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Theoretical and experimental studies for different compounds to calculate: electronic transfer, energy gap and NLO properties

This work involves theoretical and experimental studies for seven compounds to calculate the electrons spectrum and NLO properties. The theoretical study is done by employing the Time Depending Density Functional Theory TD-DFT and B3LYP/high basis set 6-311++G (2d,2p), using Gaussian program 09. Experimental study by UV/VIS spectrophotometer device to prove the theoretical study. Theoretical and experimental results were applicable in spectrum and energy gap values, in addition to convergence theoretically the energy gap results from ΔEHOMO-LUMO and UV/VIS. spectrum. Consider the theoretical method very appropriate to compounds that absorb in vacuum UV.

Scopus (1)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Mon Feb 01 2021
Journal Name
Journal Of Engineering
Investigations on the Impact of Using Elliptic Groynes on the Flow in Open Channels

This paper presents a numerical simulation of the flow around elliptic groynes by using CFD ‎software. The flow was simulated in a flume with 4m long, 0.4m wide, ‎and 0.175m ‎high ‎‎with a constant bed slope. Moreover, the first Groyne placed at 1m from the flow ‎‎inlet with a ‎constant the Groyne height of 10cm and a 1cm thickness, and the ‎width of Groynes equals ‎7cm‎. A submergence ratio of the elliptic Groynes of 75% was assumed, corresponding to a discharge of ‎0.0057‎m3/sec. The CFD ‎model showed a good ability to simulate the flow ‎around ‎Groynes with ‎ good accuracy. The results of ‎CFD software showed that when using double elliptic Groy

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Journal Of Mechanical Engineering Research And Developments
Scopus (1)
Scopus
Publication Date
Sat Jun 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Predicting of Temperature Distribution in Direct Contact Heat Transfer

An experimental and theoretical investigation of three phase direct contact heat transfer by evaporation of refrigerant drops in an immiscible liquid has been carried out. Refrigerant Rl2 and R134a were used for the dispersed phase, while water and brine were the immiscible continuous phase. A numerical analysis is presented to predict the temperature distribution throughout the circular test column radially and axially is achieved. Experimental measurements of the temperature distribution have been compared with the numerical results and are discussed .A comparison between the experimental and theoretical results showed acceptable agreement and applicability of the derived equations. Comparison with other related work showed similar beh

... Show More
View Publication Preview PDF
Publication Date
Sat Mar 04 2023
Journal Name
Baghdad Science Journal
Approximate Solution of Sub diffusion Bio heat Transfer Equation

In this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.

Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Experimental and Numerical Study on Cavitation Effects in Centrifugal Pumps

Experimental and numerical investigations of the centrifugal pump performance at non-cavitating and cavitating flow conditions were carried out in the present study. Experiments were performed by applying a vacuum to a closed-loop system to investigate the effects of the net positive suction head available (NPSHa), flow rate, water temperature and pump speed on the centrifugal pump performance. Accordingly, many of the important parameters concerning cavitation phenomenon were calculated. Also, the noise which is accompanied by cavitation was measured. Numerical analysis was implemented for two phase flow (the water and its vapor) using a 2-D simulation by ANSYS FLUENT software to investigate the internal flow of centrifugal pump under c

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Aug 28 2020
Journal Name
Iraqi Journal Of Science
ON Numerical Blow-Up Solutions of Semilinear Heat Equations

This paper is concerned with the numerical blow-up solutions of semi-linear heat equations, where the nonlinear terms are of power type functions, with zero Dirichlet boundary conditions. We use explicit linear and implicit Euler finite difference schemes with a special time-steps formula to compute the blow-up solutions, and to estimate the blow-up times for three numerical experiments. Moreover, we calculate the error bounds and the numerical order of convergence arise from using these methods. Finally, we carry out the numerical simulations to the discrete graphs obtained from using these methods to support the numerical results and to confirm some known blow-up properties for the studied problems.

Scopus (14)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Jan 10 2019
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Numerical and Experimental Study of Winglet Effect with Different Cant Angles

The present work aims to investigate the aerodynamic characteristics of the winglet cant angle of Boeing 737-800 wing numerically and experimentally. The wing contain two swept angles 38.3o and 29.13o respectively, taper ratio 0.15 and aspect ratio 8.04. The wing involves three types of airfoils sections. Four cant angles for blended winglet have been considered (0o, 34o, 60o, 83.3o). The winglet has been analyzed to find the best cant angle for the wing without and with winglet. These models have been tested theoretically at Reynolds number of 2.06 x106 in order to study the winglet aerodynamic characteristics which consist of coefficient of Drag, coefficient of lift and Lift to drag ratio, pitching moment coefficient and bending moment co

... Show More
Publication Date
Sat Jul 28 2018
Journal Name
Journal Of Engineering
Experimental and Numerical Analysis of Expanded Pipe using Rigid Conical Shape

The experimental and numerical analysis was performed on pipes suffering large plastic deformation through expanding them using rigid conical shaped mandrels, with three different cone angles (15◦, 25◦, 35◦) and diameters (15, 17, 20) mm. The experimental test for the strain results investigated the expanded areas. A numerical solution of the pipes expansion process was also investigated using the commercial finite element software ANSYS. The strains were measured for each case experimentally by stamping the mesh on the pipe after expanding, then compared with Ansys results. No cracks were generated during the process with the selected angles. It can be concluded that the strain decreased with greater angles of con

... Show More
Crossref (3)
Crossref
View Publication Preview PDF