Preferred Language
Articles
/
MhZUyIoBVTCNdQwCRKWD
Classification of Nanomaterials and the Effect of Graphene Oxide (GO) and Recently Developed Nanoparticles on the Ultrafiltration Membrane and Their Applications: A Review
...Show More Authors

The emergence of mixed matrix membranes (MMMs) or nanocomposite membranes embedded with inorganic nanoparticles (NPs) has opened up a possibility for developing different polymeric membranes with improved physicochemical properties, mechanical properties and performance for resolving environmental and energy-effective water purification. This paper presents an overview of the effects of different hydrophilic nanomaterials, including mineral nanomaterials (e.g., silicon dioxide (SiO2) and zeolite), metals oxide (e.g., copper oxide (CuO), zirconium dioxide (ZrO2), zinc oxide (ZnO), antimony tin oxide (ATO), iron (III) oxide (Fe2O3) and tungsten oxide (WOX)), two-dimensional transition (e.g., MXene), metal–organic framework (MOFs), covalent organic frameworks (COFs) and carbon-based nanomaterials (such as carbon nanotubes and graphene oxide (GO)). The influence of these nanoparticles on the surface and structural changes in the membrane is thoroughly discussed, in addition to the performance efficiency and antifouling resistance of the developed membranes. Recently, GO has shown a considerable capacity in wastewater treatment. This is due to its nanometer-sized holes, ultrathin layer and light and sturdy nature. Therefore, we discuss the effect of the addition of hydrophilic GO in neat form or hyper with other nanoparticles on the properties of different polymeric membranes. A hybrid composite of various NPs has a distinctive style and high-quality products can be designed to allow membrane technology to grow and develop. Hybrid composite NPs could be used on a large scale in the future due to their superior mechanical qualities. A summary and future prospects are offered based on the current discoveries in the field of mixed matrix membranes. This review presents the current progress of mixed matrix membranes, the challenges that affect membrane performance and recent applications for wastewater treatment systems.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jan 19 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Shear bond strength of stainless steel brackets bonded to porcelain surface treated with 1.23% acidulated phosphate fluoride gel compared to hydro fluoric acid with silane coupling agent (In vitro comparative study)
...Show More Authors

Background: With the increasing demands for adult orthodontics, a growing need arises to bond attachments to porcelain surfaces. Optimal adhesion to porcelain surface should allow orthodontic treatment without bond failure but not jeopardize porcelain integrity after debonding.The present study was carried out to compare the shear bond strength of metal bracket bonded to porcelain surface prepared by two mechanical treatments and by using different etching systems (Hydrofluoric acid 9% and acidulated phosphate fluoride 1.23%). Materials and Methods: The samples were comprised of 60 models (28mm *15mm*28mm) of metal fused to porcelain (feldspathic porcelain). They were divided as the following: group I (control): the porcelain surface left u

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 26 2020
Journal Name
Journal Of Global Pharma Technology
Synthesis, Characterization of 2-azido-4-(azido (2-azido-2-( azido carbonyl)-1,3-dioxoian-4-yl)methyl)– 5-((R-azido (hydroxyl) methyl- 1,3-dioxole-2-carbonyl azide. ethanol. hydrate (L-AZD) with Some Metal Complexes
...Show More Authors

The reaction oisolated and characterized by elemental analysis (C,H,N) , 1H-NMR, mass spectra and Fourier transform (Ft-IR). The reaction of the (L-AZD) with: [VO(II), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)], has been investigated and was isolated as tri nuclear cluster and characterized by: Ft-IR, U. v- Visible, electrical conductivity, magnetic susceptibilities at 25 Co, atomic absorption and molar ratio. Spectroscopic evidence showed that the binding of metal ions were through azide and carbonyl moieties resulting in a six- coordinating metal ions in [Cr (III), Mn (II), Co (II) and Ni (II)]. The Vo (II), Cu (II), Zn (II), Cd (II) and Hg (II) were coordinated through azide group only forming square pyramidal

... Show More