The emergence of mixed matrix membranes (MMMs) or nanocomposite membranes embedded with inorganic nanoparticles (NPs) has opened up a possibility for developing different polymeric membranes with improved physicochemical properties, mechanical properties and performance for resolving environmental and energy-effective water purification. This paper presents an overview of the effects of different hydrophilic nanomaterials, including mineral nanomaterials (e.g., silicon dioxide (SiO2) and zeolite), metals oxide (e.g., copper oxide (CuO), zirconium dioxide (ZrO2), zinc oxide (ZnO), antimony tin oxide (ATO), iron (III) oxide (Fe2O3) and tungsten oxide (WOX)), two-dimensional transition (e.g., MXene), metal–organic framework (MOFs), covalent organic frameworks (COFs) and carbon-based nanomaterials (such as carbon nanotubes and graphene oxide (GO)). The influence of these nanoparticles on the surface and structural changes in the membrane is thoroughly discussed, in addition to the performance efficiency and antifouling resistance of the developed membranes. Recently, GO has shown a considerable capacity in wastewater treatment. This is due to its nanometer-sized holes, ultrathin layer and light and sturdy nature. Therefore, we discuss the effect of the addition of hydrophilic GO in neat form or hyper with other nanoparticles on the properties of different polymeric membranes. A hybrid composite of various NPs has a distinctive style and high-quality products can be designed to allow membrane technology to grow and develop. Hybrid composite NPs could be used on a large scale in the future due to their superior mechanical qualities. A summary and future prospects are offered based on the current discoveries in the field of mixed matrix membranes. This review presents the current progress of mixed matrix membranes, the challenges that affect membrane performance and recent applications for wastewater treatment systems.
Background: Polishing technique for acrylic resin material have great effect on properties of acrylic material and bacterial colonization such as staphylococcus aurous, which are responsible for many acrylic prosthetic infections such as the commonly ocular infections. Ineffective polishing technique could affect roughness and subsequently porosity of acrylic materials.So, a new effective method for polishing acrylic was used depending on the use of optiglaze coating material. So, this study aimed to evaluate the effect of optiglaze polishing on porosity of acrylic resin material and staphylococcus aurous activity in comparison to conventional polishing technique.
Materials and methods: Specimen(n=120) were prepared :20 spe
... Show MoreIn this work, 332 Al alloy was prepared and reinforced with (0.5% and 1%) nano-Al2O3 particles. The prepared unreinforced and reinforced 332 Al alloy with nano-Al2O3 were solution heat treated (T6) at 510 ̊C and aged at 225 ̊C with different times (1, 3, and 5 h). Hardness test was performed on all the prepared alloys. All prepared alloys were dry slided under different applied loads (5, 10, 15, and 20 N) against steel counterface surface using pin on disk apparatus. The results showed that refinement effect was observed after addition of nano-Al2O3 particles and a change in silicon morphology after performing the solution heat treatment. The results also showed that har
... Show MoreIn order to study the effect of inoculation with mycorrhiza and fertilization with plant residues on the growth of plants, we used two factors: the first two levels of mycorrhiza inoculation, Glumus mossea (0 and 10 g.pot-1) and the second factor, four levels of plant residues (10 g.pot-1) celery plant residues, 10 g pot-1 mint residues, and 10 g pot-1 black bean seed residues. Mychorrizal treatment (10 g pot-1) increased the number of mycorrhiza spores and the infection percentage of mycorrhizal by 917.44% and 13088.23%, respectively; celery treatment (10 g.pot-1) increased the chlorophyll index in the leaves and height of the chard plant by 31.34% and 94.04%, respectively; and black seed treatment (10 g.pot-1) increased the percen
... Show MoreBACKGROUND: Nebulized Salbutamol have great advantages for patients with respiratory problems by depositing drugs directly to the lungs, inspite of reported adverse metabolic effects on different electrolytes and glucose heamostasis of patients.AIM OF STUDY: To evaluate the effect of nebulized salbutamol used in the management of patients with asthma who have normal serum potassium and blood glucose levels. in the emergency department after 30 and 60 minutes of administration and to find out if these results are of clinical importance that should be taken in consideration when treating patients especially those with abnormal glucose hemostasis or electrolyte disturbance. PATIENTS & METHODS: The study is a prospective follow
... Show MoreAn investigation was conducted for the improvement of viscosity index of light lubricating oil fraction (40 stock)
obtained from vacuum distillation unit of lube oil plant of Daura Refinery, using solvent extraction process.
In this study furfural solvent was used to extract the undesirable materials which reduce the viscosity index of raw
lubricating oil fraction.
The studied effecting variables of extraction were extraction temperature range from 70 to 110°C, and solvent to oil
ratio range from 1:1 to 4:1 (wt/wt).
The n-d-M method was used for calculation of carbon distribution and structural group analysis of the raffinate
produced from furfural extraction.
Also the three component phase diagram for a mixed-ba
Objectives: The purpose of this in vitro study was to compare the effect of adding a poloxamer surfactant to the irrigant solutions on its cleaning efficiency. Design: In this study the roots of extracted permanent premolar teeth were used and evaluated by using Scanning Electronic Microscopy (SEM). Materials and Method: 72 human single tooth of permanent premolar (8 for each group) were used in this in vitro study. Roots after sectioning at cervical area to get 15 mm were embedded in a plastic container filled with impression silicon, then instrumented with ProTaper rotary instruments till size F4. Each group (8 root) were irrigated with one of the nine solutions used in study: three concentrations of NaOH [5% (A1), 2.5%(A2), 0.5%(A3)], th
... Show MoreIn this study, Laser Shock Peening (LSP) effect on the polymeric composite materials has been investigated experimentally. Polymeric composite materials are widely used because they are easy to fabricate and have many attractive features. Unsaturated polyester resin as a matrix was selected and Aluminum powder with micro particles as a reinforcement material was used with different volume fraction (2.5%, 5% and 7.5%). Hand lay-up process was used for preparation the composites. Fatigue test with constant amplitude with stress ratio (R =-1) was carried out before and after LSP process with two levels of energy (1Joule and 2Joule). The result showed an increase in the endurance strength of 25.448% at 7.5% volume fraction when peened is 1J
... Show MoreThe present study aimed to explain the dose-dependent possible deleterious effects of 30 day administration of Tramadol on some hematological and biochemical parameters of laboratory male rats (Rattus norvegicus), the study consisted of eighteen adult male rats randomly divided into three equal groups (each of six). Group 1 (control) were treated by intraperitoneal injection of normal saline solution (0.2 ml), group two (low dose) was treated by intraperitonealy (i.p) injection of Tramadol at a dose of 50 mg/kg/day, group three (high dose) was treated by intraperitonealy injection of Tramadol at a dose of 100 mg/kg/day for 30 days. At the end of experimental period, rats were sacrificed. Blood were collected by cardiac puncture to inv
... Show MoreOptoelectronic devices, widely used in high energy and nuclear physics applications, suffer severe radiation damage that leads to degradations in its efficiency. In this paper, the influence of gamma radiation (137Ce source) and beta radiation (90Sr source) on the photoelectric parameters of the Si solar cell, based on the I–V characterization at different irradiation exposer, has been studied. The penetrating radiation produces defects in the base material, may be activated during its lifetime, becoming traps for electron–hole pairs produced optically and, this will, decrease the efficiency of the solar cell. The main objective of the paper is to study and measure changes in the I–V characteristics of solar cells, such as efficienc
... Show More