Preferred Language
Articles
/
MhZ4tYcBVTCNdQwC9l4Q
Land cover change for Baghdad City in the period 1986 to 2019
...Show More Authors

Earth cover of the city of Baghdad was studied exclusively within its administrative border during the period 1986-2019 using satellite scenes every five years, as Landsat TM5 and OLI8 satellite images were used. The land has been classified into ten subclasses according to the characteristics of the land cover and was classified using the Maximum Likelihood classifier. A study of the changing urban reality of the city of Baghdad during that period and the change of vegetation due to environmental factors, human influences and some human phenomena that affected the accuracy of the classification for some areas east of the city of Baghdad is presented. The year 2019 has been highlighted because of its privacy in changing the land cover of the city of Baghdad because of the amount of rain that exceeded its natural levels by far.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Journal Of Engineering
National Grid Connected 3-Phase Inverter based on Photovoltaic Solar System
...Show More Authors

In this paper, a national grid-connected photovoltaic (PV) system is proposed. It extracts the maximum power point (MPP) using three-incremental-steps perturb and observe (TISP&O) maximum power point tracking (MPPT) method. It improves the classic P&O by using three incremental duty ratio (ΔD) instead of a single one in the conventional P and O MPPT method. Therefore, the system's performance is improved to a higher speed and less power fluctuation around the MPP. The Boost converter controls the MPPT and then is connected to a three-phase voltage source inverter (VSI). This type of inverter needs a high and constant input voltage. A second-order low pass (LC) filter is connected to the output of VSI to reduce t

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Moving Objects Detection Based on Frequency Domain: image processing
...Show More Authors

In this research a proposed technique is used to enhance the frame difference technique performance for extracting moving objects in video file. One of the most effective factors in performance dropping is noise existence, which may cause incorrect moving objects identification. Therefore it was necessary to find a way to diminish this noise effect. Traditional Average and Median spatial filters can be used to handle such situations. But here in this work the focus is on utilizing spectral domain through using Fourier and Wavelet transformations in order to decrease this noise effect. Experiments and statistical features (Entropy, Standard deviation) proved that these transformations can stand to overcome such problems in an elegant way.

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Iraqi Journal Of Physics
Enhancement CT Scan Image and Study Electronic, Structural and Vibrational Properties of Iobenguane
...Show More Authors

This work is divided into two parts first part study electronic structure and vibration properties of the Iobenguane material that is used in CT scan imaging. Iobenguane, or MIBG, is an aralkylguanidine analog of the adrenergic neurotransmitter norepinephrine and a radiopharmaceutical. It acts as a blocking agent for adrenergic neurons. When radiolabeled, it can be used in nuclear medicinal diagnostic techniques as well as in neuroendocrine antineoplastic treatments. The aim of this work is to provide general information about Iobenguane that can be used to obtain results to diagnose the diseases. The second part study image processing techniques, the CT scan image is transformed to frequency domain using the LWT. Two methods of contrast

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Mar 08 2025
Journal Name
Fusion: Practice And Applications
Fast Numeric Sign Detection Using Adaptive Thresholding and Geometry of Optimized Fingers
...Show More Authors

A strong sign language recognition system can break down the barriers that separate hearing and speaking members of society from speechless members. A novel fast recognition system with low computational cost for digital American Sign Language (ASL) is introduced in this research. Different image processing techniques are used to optimize and extract the shape of the hand fingers in each sign. The feature extraction stage includes a determination of the optimal threshold based on statistical bases and then recognizing the gap area in the zero sign and calculating the heights of each finger in the other digits. The classification stage depends on the gap area in the zero signs and the number of opened fingers in the other signs as well as

... Show More
Scopus
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Research on Emotion Classification Based on Multi-modal Fusion
...Show More Authors

Nowadays, people's expression on the Internet is no longer limited to text, especially with the rise of the short video boom, leading to the emergence of a large number of modal data such as text, pictures, audio, and video. Compared to single mode data ,the multi-modal data always contains massive information. The mining process of multi-modal information can help computers to better understand human emotional characteristics. However, because the multi-modal data show obvious dynamic time series features, it is necessary to solve the dynamic correlation problem within a single mode and between different modes in the same application scene during the fusion process. To solve this problem, in this paper, a feature extraction framework of

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Oct 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
An Estimation of Survival and Hazard Rate Functions of Exponential Rayleigh Distribution
...Show More Authors

In this paper, we used the maximum likelihood estimation method to find the estimation values ​​for survival and hazard rate functions of the Exponential Rayleigh distribution based on a sample of the real data for lung cancer and stomach cancer obtained from the Iraqi Ministry of Health and Environment, Department of Medical City, Tumor Teaching Hospital, depending on patients' diagnosis records and number of days the patient remains in the hospital until his death.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Signature Verification Based on Moments Technique
...Show More Authors

In this research we will present the signature as a key to the biometric authentication technique. I shall use moment invariants as a tool to make a decision about any signature which is belonging to the certain person or not. Eighteen voluntaries give 108 signatures as a sample to test the proposed system, six samples belong to each person were taken. Moment invariants are used to build a feature vector stored in this system. Euclidean distance measure used to compute the distance between the specific signatures of persons saved in this system and with new sample acquired to same persons for making decision about the new signature. Each signature is acquired by scanner in jpg format with 300DPI. Matlab used to implement this system.

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D

... Show More
View Publication Preview PDF
Scopus (23)
Crossref (17)
Scopus Crossref
Publication Date
Wed Apr 02 2014
Journal Name
Journal Of Theoretical And Applied Information Technology
TUMOR BRAIN DETECTION THROUGH MR IMAGES: A REVIEW OF LITERATURE
...Show More Authors

Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin

... Show More
Scopus (46)
Scopus
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication Preview PDF