Four simply supported reinforced concrete (RC) beams were test experimentaly and analyzed using the extended finite element method (XFEM). This method is used to treat the discontinuities resulting from the fracture process and crack propagation in that occur in concrete. The Meso-Scale Approach (MSA) used to model concrete as a heterogenous material consists of a three-phasic material (coarse aggregate, mortar, and air voids in the cement paste). The coarse aggregate that was used in the casting of these beams rounded and crashed aggregate shape with maximum size of 20 mm. The compressive strength used in these beams is equal to 17 MPa and 34 MPa, respectively. These RC beams are designed to fail due to flexure when subjected to load as a two-point loading. To model the coarse aggregate realistically, the aggregate must distributed randomly according to the gradient and amount actually used in the mix design. This property is not found in the ABAQUS program that resulted in the use of an alternate program to represent the aggregate randomly. Next, the random representation of the aggregate were transfered to the ABAQUS program by using commands and instructions that the program can understand, to draw as a sketch. The comparison between experimental and numerical results showed that the XFEM is a good method used to simulate the non-smooth behavior in RC beams such as discontinuitiy and singularity. While a mesoscale model can be simulated the non-homogeneity in the concrete.
The research aims to identify the factors that affect the quality of the product by using the Failure Mode and Effect Analysis (FMEA) tool and to suggest measures to reduce the deviations or defects in the production process. I used the case study approach to reach its goals, and the air filter product line was chosen in the air filters factory of Al-Zawraa General Company. The research sample was due to the emergence of many defects of different impact and the continuing demand for the product. I collected data and information from the factory records for two years (2018-2019) and used a scheme Pareto Fishbone Diagram as well as an FMEA tool to analyze data and generate results.
Par
... Show MoreIn the last two decades, arid and semi-arid regions of China suffered rapid changes in the Land Use/Cover Change (LUCC) due to increasing demand on food, resulting from growing population. In the process of this study, we established the land use/cover classification in addition to remote sensing characteristics. This was done by analysis of the dynamics of (LUCC) in Zhengzhou area for the period 1988-2006. Interpretation of a laminar extraction technique was implied in the identification of typical attributes of land use/cover types. A prominent result of the study indicates a gradual development in urbanization giving a gradual reduction in crop field area, due to the progressive economy in Zhengzhou. The results also reflect degradati
... Show MoreIn this research work, a simulator with time-domain visualizers and configurable parameters using a continuous time simulation approach with Matlab R2019a is presented for modeling and investigating the performance of optical fiber and free-space quantum channels as a part of a generic quantum key distribution system simulator. The modeled optical fiber quantum channel is characterized with a maximum allowable distance of 150 km with 0.2 dB/km at =1550nm. While, at =900nm and =830nm the attenuation values are 2 dB/km and 3 dB/km respectively. The modeled free space quantum channel is characterized at 0.1 dB/km at =860 nm with maximum allowable distance of 150 km also. The simulator was investigated in terms of the execution of the BB84 p
... Show MoreDeveloping smart city planning requires integrating various techniques, including geospatial techniques, building information models (BIM), information and communication technology (ICT), and artificial intelligence, for instance, three-dimensional (3D) building models, in enabling smart city applications. This study aims to comprehensively analyze the role and significance of geospatial techniques in smart city planning and implementation. The literature review encompasses (74) studies from diverse databases, examining relevant solutions and prototypes related to smart city planning. The focus highlights the requirements and preparation of geospatial techniques to support the transition to a smart city. The paper explores various aspects,
... Show MoreIn this research work, a simulator with time-domain visualizers and configurable parameters using a continuous time simulation approach with Matlab R2019a is presented for modeling and investigating the performance of optical fiber and free-space quantum channels as a part of a generic quantum key distribution system simulator. The modeled optical fiber quantum channel is characterized with a maximum allowable distance of 150 km with 0.2 dB/km at =1550nm. While, at =900nm and =830nm the attenuation values are 2 dB/km and 3 dB/km respectively. The modeled free space quantum channel is characterized at 0.1 dB/km at =860 nm with maximum allowable distance of 150 km also. The simulator was investigated in terms of the execution of the BB84 prot
... Show MoreThe insulation system of a machine coil includes several layers made of materials with different characteristics. The effective insulation design of machine coils, especially in the machine end winding, depends upon an accurate model of the stress grading system. This paper proposes a modeling approach to predict the transient overvoltage, electric field, and heat generation in machine coils with a stress grading system, considering the variation of physical properties in the insulation layers. A non-uniform line model is used to divide the coil in different segments based on material properties and lengths: overhang, stress grading and slot. The cascaded connection of chain matrices is used to connect segments for the representation of the
... Show MoreThe flavonoglycone hesperidin is recognized as a potent anti-inflammatory, anticancer, and antioxidant agent. However, its poor bioavailability is a crucial bottleneck regarding its therapeutic activity. Gold nanoparticles are widely used in drug delivery because of its unique properties that differ from bulk metal. Hesperidin loaded gold nanoparticles were successfully prepared to enhance its stability and bioactive potential, as well as to minimize the problems associated with its absorption. The free radical scavenging activities of hesperidin, gold nanoparticles, and hesperidin loaded gold nanoparticles were compared with that of Vitamin C and subsequently evaluated in vitro using 2,2-diphenyl-1-picrylhydrazyl assay. The antioxi
... Show More