Four simply supported reinforced concrete (RC) beams were test experimentaly and analyzed using the extended finite element method (XFEM). This method is used to treat the discontinuities resulting from the fracture process and crack propagation in that occur in concrete. The Meso-Scale Approach (MSA) used to model concrete as a heterogenous material consists of a three-phasic material (coarse aggregate, mortar, and air voids in the cement paste). The coarse aggregate that was used in the casting of these beams rounded and crashed aggregate shape with maximum size of 20 mm. The compressive strength used in these beams is equal to 17 MPa and 34 MPa, respectively. These RC beams are designed to fail due to flexure when subjected to load as a two-point loading. To model the coarse aggregate realistically, the aggregate must distributed randomly according to the gradient and amount actually used in the mix design. This property is not found in the ABAQUS program that resulted in the use of an alternate program to represent the aggregate randomly. Next, the random representation of the aggregate were transfered to the ABAQUS program by using commands and instructions that the program can understand, to draw as a sketch. The comparison between experimental and numerical results showed that the XFEM is a good method used to simulate the non-smooth behavior in RC beams such as discontinuitiy and singularity. While a mesoscale model can be simulated the non-homogeneity in the concrete.
Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre
... Show MoreAbstract: Word sense disambiguation (WSD) is a significant field in computational linguistics as it is indispensable for many language understanding applications. Automatic processing of documents is made difficult because of the fact that many of the terms it contain ambiguous. Word Sense Disambiguation (WSD) systems try to solve these ambiguities and find the correct meaning. Genetic algorithms can be active to resolve this problem since they have been effectively applied for many optimization problems. In this paper, genetic algorithms proposed to solve the word sense disambiguation problem that can automatically select the intended meaning of a word in context without any additional resource. The proposed algorithm is evaluated on a col
... Show MoreThe aim of this research is to compare traditional and modern methods to obtain the optimal solution using dynamic programming and intelligent algorithms to solve the problems of project management.
It shows the possible ways in which these problems can be addressed, drawing on a schedule of interrelated and sequential activities And clarifies the relationships between the activities to determine the beginning and end of each activity and determine the duration and cost of the total project and estimate the times used by each activity and determine the objectives sought by the project through planning, implementation and monitoring to maintain the budget assessed
... Show MoreFractal image compression gives some desirable properties like fast decoding image, and very good rate-distortion curves, but suffers from a high encoding time. In fractal image compression a partitioning of the image into ranges is required. In this work, we introduced good partitioning process by means of merge approach, since some ranges are connected to the others. This paper presents a method to reduce the encoding time of this technique by reducing the number of range blocks based on the computing the statistical measures between them . Experimental results on standard images show that the proposed method yields minimize (decrease) the encoding time and remain the quality results passable visually.
As s widely use of exchanging private information in various communication applications, the issue to secure it became top urgent. In this research, a new approach to encrypt text message based on genetic algorithm operators has been proposed. The proposed approach follows a new algorithm of generating 8 bit chromosome to encrypt plain text after selecting randomly crossover point. The resulted child code is flipped by one bit using mutation operation. Two simulations are conducted to evaluate the performance of the proposed approach including execution time of encryption/decryption and throughput computations. Simulations results prove the robustness of the proposed approach to produce better performance for all evaluation metrics with res
... Show MoreIn This paper, sky radio emission background level associated with radio storm burst for the Sun and Jupiter is determined at frequency (20.1 MHz). The observation data for radio Jove telescope for the Sun and Jupiter radio storm observations data are loaded from NASA radio Jove telescope website, the data of Sunspot number are loaded from National Geophysical Data Center, (NGDC). Two radio Jove stations [(Sula, MT), (Lamy, NM)] are chose from data website for these huge observations data. For the Sun, twelve figures are used to determine the relation between radio background emission, and the daily Sunspot number. For Jupiter a twenty four figures are used to determine the relation between radio background emission and diffraction betwe
... Show MoreThe manual classification of oranges according to their ripeness or flavor takes a long time; furthermore, the classification of ripeness or sweetness by the intensity of the fruit’s color is not uniform between fruit varieties. Sweetness and color are important factors in evaluating the fruits, the fruit’s color may affect the perception of its sweetness. This article aims to study the possibility of predicting the sweetness of orange fruits based on artificial intelligence technology by studying the relationship between the RGB values of orange fruits and the sweetness of those fruits by using the Orange data mining tool. The experiment has applied machine learning algorithms to an orange fruit image dataset and performed a co
... Show MoreWireless Sensor Networks (WSNs) are promoting the spread of the Internet for devices in all areas of
life, which makes it is a promising technology in the future. In the coming days, as attack technologies become
more improved, security will have an important role in WSN. Currently, quantum computers pose a significant
risk to current encryption technologies that work in tandem with intrusion detection systems because it is
difficult to implement quantum properties on sensors due to the resource limitations. In this paper, quantum
computing is used to develop a future-proof, robust, lightweight and resource-conscious approach to sensor
networks. Great emphasis is placed on the concepts of using the BB8