by in situ polymerization of aniline monomer, conducting polyaniline (PANI) nanocomposites containing various concentrations of carboxylic acid functionalized multi-walled carbon nanotubes (f-MWCNT) were synthesized. The morphological and electrical properties of pure PANI and PANI /MWCNT nanocomposites were examined by using Fourier transform- infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Atomic Force Microscopy (AFM) respectively. FTIR spectra shows that the carboxylic acid groups formed at the both ends of the sidewalls of the MWCNTs. The aniline monomers were polymerized on the surface of MWCNTs, depending on the -* electron interaction between aniline monomers and MWCNTs and hydrogen bonding into interaction between the amino groups of aniline monomers and carboxylic acid group of f-MWCNT. The AC, DC, electrical conductivities of pure PANI and PANI/MWCNT nanocomposite have been measured in frequency range (10Hz-100KHz) and in the temperature range from (30 to 160 C°). the results shows the electrical conductivity of the nanocomposite is higher than pure PANI. AC conductivity at low frequencies is independent of frequencies and increased by increasing the MWCNTs concentration.
A.C electrical conductivity and dielectric properties for poly
(vinyl alcohol) (PVA) /poly (ethylene oxide) (PEO) blends undoped
and doped with multi-walled carbon nanotube (MWCNTs) with
different concentrations (1, and 3 wt %) in the frequency range
(25x103 - 5x106 Hz) were investigated. Samples of (PVA/PEO)
blends undoped and doped with MWCNTs were prepared using
casting technique. The electrical conductivity measurements showed
that σA.C is frequency dependent and obey the relation σA.C =Aωs for
undoped and doped blends with 1% MWCNTs, while it is frequency
independent with increases of MWCNTs content to 3%. The
exponent s showed proceeding increase with the increase of PEO
ratio (≥50%) for undope
The purpose of this research was to evaluate rice husk functionalized with Mg-Fe-layered double hydroxide (RH-Mg/Fe-LDH) as an adsorbent for the removal of meropenem antibiotic (MA) from an aqueous solution. Several batch experiments were undertaken using various conditions. Based on the results, the optimal Mg/Fe-LDH adsorbent with a pH of 9 and an M2+/M3+ ratio of 0.5 was associated with the lowest particle size (specifically. 11.1 nm). The Langmuir and Freundlich models were consistent with the experimental isotherm data (R2 was 0.984 and 0.993, respectively), and MA’s highest equilibrium adsorption capacity was 43.3 mg/g. Additionally, the second-order model was consistent with the adsorption kinetic results.
The search involve the synthesis of some new 1,3-oxazepine and 1,3-diazepine derivatives were synthesized from Schiff base. The Schiff base (VIII) prepared from reaction of aldehyde (IV) derived from L-ascorbic acid with aromatic amine ([2-(4- nitrophenyl)-5-(4-aminophenyl)-1,3,4-oxadiazole] (VII). Oxazepine compounds (IX-XI) were synthesized from the cyclic condensation of Schiff base (VIII) with (maleic, phthalic and 3-nitrophthalic) anhydride, compounds (IX-XI) that were reacted with p-methoxyaniline to give diazepine derivatives (XII-XIV). The structures of the new synthesized compounds have been confirmed by physical properties and spectroscopy measurements such as FTIR, and some of them by 1 H-NMR, 13 CNMR, Mass, and evaluated
... Show MoreFour electrodes were synthesized based on molecularly imprinted polymers (MIPs). Two MIPs were prepared by using the diclofenac sodium (DFS) as the template, 2-hydroxy ethyl metha acrylate(2-HEMA) and 2-vinyl pyridine(2-VP) as monomers as well as divinyl benzene and benzoyl peroxide as cross linker and initiator respectively. The same composition used for prepared non-imprinted polymers (NIPs) but without the template (diclofenac sodium). To prepared the membranes electrodes used different plasticizers in PVC matrix such as: tris(2-ethyl hexyl) phosphate (TEHP), tri butyl phosphate (TBP), bis(2-ethyl hexyl) adipate (BEHA) and tritolyl phosphate (TTP). The characteristics studied the slop, detection limit, life time and linearity range of DF
... Show MoreThe ligand 4-amino-N-(5-methylisoxazole-3-yl)-benzene-sulfonamide(L1) (as a chelating ligand) was treated with Pd(II),Pt (IV) and Au(III) ions in alcoholic medium in order to prepare a series of new metal complexes. Mixed ligand complexes of this primary ligand were prepared in alcoholic medium in presence of the co-ligand 4,4'-dimethyl-2,2'-bipyridyl(L2) with Cu(II) ,Pd(II) and Au(III) ions. The complexes were characterized in solid state using flame atomic absorption, elemental analysis C.H.N.S, FT-IR, UV-Vis Spectroscopy, conductivity and magnetic susceptibility measurements. The nature of some complexes formed in ethanolic solution has been studied following the molar ratio method, also stability constant was studied and the complexes f
... Show MoreIn this work, Schiff base ligands L1: N, N-bis (2-hydroxy-1-naphthaldehyde) hydrazine, L2: N, N-bis (salicylidene) hydrazine, and L3:N –salicylidene- hydrazine were synthesized by condensation reaction. The prepared ligands were reacted with specific divalent metal ions such as (Mn2+, Fe2+, Ni2+) to prepare their complexes. The ligands and complexes were characterized by C.H.N, FT-IR, UV-Vis, solubility, melting point and magnetic susceptibility measurements. The results show that the ligands of complexes (Mn2+, Fe2+) have octahedral geometry while the ligands of complexes (Ni2+) have tetrahedral geometry.