Solid dispersion (SD) is one of the most widely used methods to resolve issues accompanied by poorly soluble drugs. The present study was carried out to enhance the solubility and dissolution rate of Aceclofenac (ACE), a BCS class II drug with pH-dependent solubility, by the SD method. Effervescent assisted fusion technique (EFSD) using different hydrophilic carriers (mannitol, urea, Soluplus®, poloxamer 188, and poloxamer 407) in the presence of an effervescent base (sodium bicarbonate and citric acid) in different drug: carrier: effervescent base ratio and the conventional fusion technique (FSD) were used to prepare ACE SD. Solubility, dissolution rate, Fourier transformation infrared spectroscopy (FTIR), PowderX-ray diffraction study (PXRD), and Differential scanning calorimetry (DSC) were determined for the SD obtained from both techniques as a comparative study. The results showed that EFSD using ACE: Soluplus®: effervescent base in a ratio of 1:2:1 had higher solubility and dissolution rate than that obtained from FSD prepared by ACE: Soluplus® in a ratio of 1:2. However, the two techniques obtained the amorphous form according to XRD and DSC results. It can be concluded that EFSD is a promising method for the solubility and dissolution rate improvement of BCS class II drugs.
Oral jelly is a semisolid preparation that could resolve problem associated withdosage form’s swallowing, especially in pediatric and elderly ones. This work aimedto prepare oral flurbiprofen (FBP) jelly to improve patient compliance. Heating andcongealing method was used to prepare FBP jelly using three different polymers (pectin,sodium carboxymethyl cellulose, and hydroxypropyl methylcellulose). The effect ofdifferent concentrations of pectin and sucrose on jelly properties was studied. Theresults revealed that both pectin and sodium carboxymethyl cellulose polymers gaveacceptable jelly appearance and consistency. It was also observed that the increase ofpectin or sucrose concentration had a significant impact on jelly viscosity. All pe
... Show MoreClotrimazole (CLO) is an antimycotic imidazole derivative applied locally for the treatment of vaginal yeast infections. In this study, CLO was formulated as vaginal mucoadhesive hydrogel, using different types of mucoadhesive polymers to ensure prolonged contact between active ingredient and vaginal mucosa.
Physicochemical properties of the prepared formulas were evaluated as a visual inspection, pH, swelling index, spreadability, and mucoadhesive characteristics, in addition to an in-vitro drug release. The influence of type and concentration of polymers as CMC-Na (1.5, 2.5, and 3.5%w/w), carbopol 940( 0.25, 0.5, and 1 %w/w) and poloxamer 407 (15, 25, 30%w/w) on CLO release from the prepared gels were also invest
... Show MoreThe new bidentate Schiff base ligand namely [(E)-N1-(4-methoxy benzylidene) benzene-1, 2-diamine] was prepared from condensation of 4-Methoxy benzaldehyde with O-Phenylene diamine at 1:1 molar ratio in ethanol as a solvent in presence of drops of 48% HBr. The structure of ligand (L) was characterized by, FT-IR, U.V-Vis., 1H-, 13C- NMR spectrophotometer, melting point and elemental microanalysis C.H.N. Metal complexes of the ligand (L) in general molecular formula [M(L)3], where M= Mn(II), Co(II), Ni(II),Cu(II) and Hg(II); L=(C14H14N2O) in ratio (1:3)(Metal:Ligand) were synthesized and characterized by Atomic absorption, FT- IR, U.V-Vis. spectra, molar conductivity, chloride content, melting point and magnetic susceptibility from the above d
... Show MoreHydrophobic silica aerogels were successfully preparation by an ambient pressure drying method from sodium silicate (Na2SiO3) with different pH values (5, 6, 7, 8, 9 and 10). In this study, acidic HCl (1M), a basic NH4OH (1M) were selected as a catalyst to perform the surface modification in a TMCS (trimethylchlorosilane) solution. The surface chemical modification of the aerogels was assured by the Fourier transform infrared (FTIR) spectroscopic studies. Other physical properties, such as pore volume and pore size and specific surface area were determined by Brunauer-Emmett- Teller (BET) method. The effect of pH values on the bulk density of aerogel. The sol–gel parameter pH value in the sol, have marked effects on the physical proper
... Show MoreCr2O3 thin films have been prepared by spray pyrolysis on a glass substrate. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity were expected. It was found that all these parameters increase as the annealing temperature increased to 550°C.
In this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th
... Show MoreIn this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.