Solid dispersion (SD) is one of the most widely used methods to resolve issues accompanied by poorly soluble drugs. The present study was carried out to enhance the solubility and dissolution rate of Aceclofenac (ACE), a BCS class II drug with pH-dependent solubility, by the SD method. Effervescent assisted fusion technique (EFSD) using different hydrophilic carriers (mannitol, urea, Soluplus®, poloxamer 188, and poloxamer 407) in the presence of an effervescent base (sodium bicarbonate and citric acid) in different drug: carrier: effervescent base ratio and the conventional fusion technique (FSD) were used to prepare ACE SD. Solubility, dissolution rate, Fourier transformation infrared spectroscopy (FTIR), PowderX-ray diffraction study (PXRD), and Differential scanning calorimetry (DSC) were determined for the SD obtained from both techniques as a comparative study. The results showed that EFSD using ACE: Soluplus®: effervescent base in a ratio of 1:2:1 had higher solubility and dissolution rate than that obtained from FSD prepared by ACE: Soluplus® in a ratio of 1:2. However, the two techniques obtained the amorphous form according to XRD and DSC results. It can be concluded that EFSD is a promising method for the solubility and dissolution rate improvement of BCS class II drugs.
An analytical method and a two-dimensional finite element model for treating the problem of laser heating and melting has been applied to aluminum 2519T87and stainless steel 304. The time needed to melt and vaporize and the effects of laser power density on the melt depth for two metals are also obtained. In addition, the depth profile and time evolution of the temperature before melting and after melting are given, in which a discontinuity in the temperature gradient is obviously observed due to the latent heat of fusion and the increment in thermal conductivity in solid phase. The analytical results that induced by laser irradiation is in good agreement with numerical results.
Clotrimazole (CLO) is an antimycotic imidazole derivative applied locally for the treatment of vaginal yeast infections. In this study, CLO was formulated as vaginal mucoadhesive hydrogel, using different types of mucoadhesive polymers to ensure prolonged contact between active ingredient and vaginal mucosa.
Physicochemical properties of the prepared formulas were evaluated as a visual inspection, pH, swelling index, spreadability, and mucoadhesive characteristics, in addition to an in-vitro drug release. The influence of type and concentration of polymers as CMC-Na (1.5, 2.5, and 3.5%w/w), carbopol 940( 0.25, 0.5, and 1 %w/w) and poloxamer 407 (15, 25, 30%w/w) on CLO release from the prepared gels were also invest
... Show MoreLiquisolid compact is the most promising technique for increasing dissolution rate and bioavailability of poorly soluble drugs.Clopidogrel bisulfate is an oral antiplatelets used for treatment and prophylaxis of cardiovacular and peripheral vascular diseases related to platelets aggreagation.Clopidogrel has low solubility at high pH media of intestine and low bioavailability of a bout 50% after oral doses.The purpose of this work was to enhance dissolution pattern of clopidogrel through its formulation into liquisolid tablets.A mathematical model was used to calculate the optimum quantities of tween 80 , carrier (Avicel PH 102) and coating material (Aerosil 200) needed to prepare acceptably flowing and compactible powder mixtures.The liq
... Show MoreThe aim of present study was to develop gel formulation of microsponges of poorly soluble drug meloxicam (MLX) in order to enhance the release and dissolution of MLX which is the limitation for preparation in topical forms. Also skin delivery is an alternative administration for MLX that can minimize gastrointestinal (GI) side effects and improve patient compliance. The microsponges of MLX were prepared by quasi-emulsion solvent diffusion method. The effects of drug:polymer ratio, stirring time and Eudragit polymer type on the physical characteristics of microsponges were investigated and characterized for production yield, loading efficiency, particle size, surface morphology, and in vitro drug release from microsponges. The selec
... Show MoreOral jelly is a semisolid preparation that could resolve problem associated withdosage form’s swallowing, especially in pediatric and elderly ones. This work aimedto prepare oral flurbiprofen (FBP) jelly to improve patient compliance. Heating andcongealing method was used to prepare FBP jelly using three different polymers (pectin,sodium carboxymethyl cellulose, and hydroxypropyl methylcellulose). The effect ofdifferent concentrations of pectin and sucrose on jelly properties was studied. Theresults revealed that both pectin and sodium carboxymethyl cellulose polymers gaveacceptable jelly appearance and consistency. It was also observed that the increase ofpectin or sucrose concentration had a significant impact on jelly viscosity. All pe
... Show MoreIn this research Bi2S3 thin films have been prepared on glass substrates using chemical spray pyrolysis method at substrate temperature (300oC) and molarity (0.015) mol. Structural and optical properties of the thin films above have been studied; XRD analysis demonstrated that the Bi2S3 films are polycrystalline with (031) orientation and with Orthorhombic structure. The optical properties were studied using the spectral of the absorbance and transmission of films in wavelength ranging (300-1100) nm. The study showed that the films have high transmission within the range of the visible spectrum. Also absorption coefficient, extinction coefficient and the optical energy gap (Eg) was calculated, found that the film have direct ener
... Show MoreThe new bidentate Schiff base ligand namely [(E)-N1-(4-methoxy benzylidene) benzene-1, 2-diamine] was prepared from condensation of 4-Methoxy benzaldehyde with O-Phenylene diamine at 1:1 molar ratio in ethanol as a solvent in presence of drops of 48% HBr. The structure of ligand (L) was characterized by, FT-IR, U.V-Vis., 1H-, 13C- NMR spectrophotometer, melting point and elemental microanalysis C.H.N. Metal complexes of the ligand (L) in general molecular formula [M(L)3], where M= Mn(II), Co(II), Ni(II),Cu(II) and Hg(II); L=(C14H14N2O) in ratio (1:3)(Metal:Ligand) were synthesized and characterized by Atomic absorption, FT- IR, U.V-Vis. spectra, molar conductivity, chloride content, melting point and magnetic susceptibility from the above d
... Show More