Preferred Language
Articles
/
MRcOOY8BVTCNdQwCMGRm
Groupwise Non-Rigid Image Alignment Using Few Parameters: Registration of Facial and Medical Images

Groupwise non-rigid image alignment is a difficult non-linear optimization problem involving many parameters and often large datasets. Previous methods have explored various metrics and optimization strategies. Good results have been previously achieved with simple metrics, requiring complex optimization, often with many unintuitive parameters that require careful tuning for each dataset. In this chapter, the problem is restructured to use a simpler, iterative optimization algorithm, with very few free parameters. The warps are refined using an iterative Levenberg-Marquardt minimization to the mean, based on updating the locations of a small number of points and incorporating a stiffness constraint. This optimization approach is efficient, has very few free parameters to tune, and the authors show how to tune the few remaining parameters. Results show that the method reliably aligns various datasets including two facial datasets and two medical datasets of prostate and brain MRI images and demonstrates efficiency in terms of performance and a reduction of the computational cost.

View Publication
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
Mobile-based Telemedicine Application using SVD and F-XoR Watermarking for Medical Images

A medical- service platform is a mobile application through which patients are provided with doctor’s diagnoses based on information gleaned from medical images. The content of these diagnostic results must not be illegitimately altered during transmission and must be returned to the correct patient. In this paper, we present a solution to these problems using blind, reversible, and fragile watermarking based on authentication of the host image. In our proposed algorithm, the binary version of the Bose_Chaudhuri_Hocquengham (BCH) code for patient medical report (PMR) and binary patient medical image (PMI) after fuzzy exclusive or (F-XoR) are used to produce the patient's unique mark using secret sharing schema (SSS). The patient’s un

... Show More
Scopus (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Mon Mar 01 2010
Journal Name
Basrah Journal Of Science
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Using Fuzzy Clustering to Detect the Tumor Area in Stomach Medical Images

Although the number of stomach tumor patients reduced obviously during last decades in western countries, but this illness is still one of the main causes of death in developing countries. The aim of this research is to detect the area of a tumor in a stomach images based on fuzzy clustering. The proposed methodology consists of three stages. The stomach images are divided into four quarters and then features elicited from each quarter in the first stage by utilizing seven moments invariant. Fuzzy C-Mean clustering (FCM) was employed in the second stage for each quarter to collect the features of each quarter into clusters. Manhattan distance was calculated in the third stage among all clusters' centers in all quarters to disclosure of t

... Show More
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue May 16 2023
Journal Name
International Journal Of Online And Biomedical Engineering (ijoe)
Watermarking in Medical Image

Medical image security is possible using digital watermarking techniques. Important information is included in a host medical image in order to provide integrity, consistency, and authentication in the healthcare information system. This paper introduces a proposed method for embedding invisible watermarking in the 3D medical image. The cover medical image used is DICOM which consists of a number of slices, each one representing a sense, firstly must separate the ROI (Region of Interest) and NROI (Not Region Of Interest) for each slice, the separation process performed by the particular person who selected by hand the ROI. The embedding process is based on a key generated from Arnold's chaotic map used as the position of a pixel in

... Show More
Scopus (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Machine Learning Approach for Facial Image Detection System

     Face detection systems are based on the assumption that each individual has a unique face structure and that computerized face matching is possible using facial symmetry. Face recognition technology has been employed for security purposes in many organizations and businesses throughout the world. This research examines the classifications in machine learning approaches using feature extraction for the facial image detection system. Due to its high level of accuracy and speed, the Viola-Jones method is utilized for facial detection using the MUCT database. The LDA feature extraction method is applied as an input to three algorithms of machine learning approaches, which are the J48, OneR, and JRip classifiers.  The experiment’s

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Machine Learning Approach for Facial Image Detection System

HM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023

Scopus (2)
Scopus
View Publication
Publication Date
Tue Jun 30 2015
Journal Name
International Journal Of Computer Techniques
Multifractal-Based Features for Medical Images Classification

This paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4

... Show More
Preview PDF
Publication Date
Tue Dec 26 2017
Journal Name
Al-khwarizmi Engineering Journal
Fuzzy Wavenet (FWN) classifier for medical images

 

    The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.

  In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.

&n

... Show More
View Publication Preview PDF
Publication Date
Thu Aug 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Application of Kass' Snake in Medical Images Segmentation

A   snake   is   an   energy-minimizing   spline   guided   by   external

constraint forces and influenced by image forces that pull it toward features such as lines and edges. Snakes are active contour models: they lock onto nearby edges, localizing them accurately. Snakes provide a unified account of a number of visual problems, including detection of edges, lines, and motion tracking. We have used snakes successfully for segmentation, in  which  user-imposed  constraint forces guide the snake near features of interest (anatomical structures). Magnetic Resonance Image (MRI) data set and Ultrasound images are used for our experiments.

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Facial Emotion Images Recognition Based On Binarized Genetic Algorithm-Random Forest

Most recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Or

... Show More
Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF