Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In addition, a bi-modal system for recognising emotions from facial expressions and speech signals is presented. This is important since one modality may not provide sufficient information or may not be available for any reason beyond operator control. To perform this, decision-level fusion is performed using a novel way for weighting according to the proportions of facial and speech impressions. The results show an average accuracy of 93.22 %.
The rapid development of telemedicine services and the requirements for exchanging medical information between physicians, consultants, and health institutions have made the protection of patients’ information an important priority for any future e-health system. The protection of medical information, including the cover (i.e. medical image), has a specificity that slightly differs from the requirements for protecting other information. It is necessary to preserve the cover greatly due to its importance on the reception side as medical staff use this information to provide a diagnosis to save a patient's life. If the cover is tampered with, this leads to failure in achieving the goal of telemedicine. Therefore, this work provides an in
... Show MoreRation power plants, to generate power, have become common worldwide. One such one is the steam power plant. In such plants, various moving parts of heavy machines generate a lot of noise. Operators are subjected to high levels of noise. High noise level exposure leads to psychological as well physiological problems; different kinds of ill effects. It results in deteriorated work efficiency, although the exact nature of work performance is still unknown. To predict work efficiency deterioration, neuro-fuzzy tools are being used in research. It has been established that a neuro-fuzzy computing system helps in identification and analysis of fuzzy models. The last decade has seen substantial growth in development of various neuro-fuzzy systems
... Show MoreMany financial institutions invest their surplus funds in stocks, either to obtain dividends or for trading purposes and to obtain profits from the difference between the cost and the selling price, and investment in shares represents an important part of the financial position of financial institutions applying to the common accounting system of banks and insurance companies, in addition to their impact It is clear on the result of the activity of these institutions.The aim of the research is to define what the shares and their types are, and to indicate the accounting treatments needed to move towards the process of adopting the International Financial Reporting Standard No. (9) and its reflection on its financial statements. I
... Show MoreThis paper proposes a compact, plasmonic-based 4 × 4 nonblocking switch for optical networks. This device uses six 2 × 2 plasmonic Mach-Zehnder switch (MZS), whose arm waveguide is supported by a JRD1 polymer layer as a high electro-optic coefficient material. The 4 × 4 switch is designed in COMSOL environment for 1550 nm wavelength operation. The performance of the proposed switch outperforms those of conventional (nonplasmonic) counterparts. The designed switch yields a compact structure ( 500 × 70 µ m 2 ) having V π L = 12 V · µ m , 1.5 THz optical bandwidth, 7.7 dB insertion loss, and −26.5 dB crosstalk. The capability of the switch to route 8 × 40 Gbps WDM signal is demonstrated successfully.
... Show MoreReinforced concrete (RC) slabs strengthened with carbon fibre reinforced polymer (CFRP) and subjected to flexural actions may experience many types of failure, including FRP debonding, FRP rupture and concrete crushing. Of these different types of failure modes, FRP debonding stands out as the most predominant type of failure because of its dependence on the relatively weak bond interface between the soffit of the RC member and the FRP sheet attached to it. Many anchorage systems have been developed to enhance the performance of strengthened systems, one of which is the hybrid anchor, which combines the effects of patch anchors and spike anchors. Hybrid anchors have shown significant enhancement when used with RC members subjected to shear
... Show MoreIn this paper, a new hybrid algorithm for linear programming model based on Aggregate production planning problems is proposed. The new hybrid algorithm of a simulated annealing (SA) and particle swarm optimization (PSO) algorithms. PSO algorithm employed for a good balance between exploration and exploitation in SA in order to be effective and efficient (speed and quality) for solving linear programming model. Finding results show that the proposed approach is achieving within a reasonable computational time comparing with PSO and SA algorithms.