Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In addition, a bi-modal system for recognising emotions from facial expressions and speech signals is presented. This is important since one modality may not provide sufficient information or may not be available for any reason beyond operator control. To perform this, decision-level fusion is performed using a novel way for weighting according to the proportions of facial and speech impressions. The results show an average accuracy of 93.22 %.
Laser is a powerful device that has a wide range of applications in fields ranging from materials science and manufacturing to medicine and fibre optic communications. One remarkable
The dynamic thermomechanical properties, sealing ability, and voids formation of an experimental obturation hydroxyapatite-reinforced polyethylene (HA/PE) composite/carrier system were investigated and compared with those of a commercial system [GuttaCore (GC)]. The HA/PE system was specifically designed using a melt-extrusion process. The viscoelastic properties of HA/PE were determined using a dynamic thermomechanical analyser. Human single-rooted teeth were endodontically instrumented and obturated using HA/PE or GC systems, and then sealing ability was assessed using a fluid filtration system. In addition, micro-computed tomography (μCT) was used to quantify apparent voids within the root-canal space. The data were statistically analys
... Show MoreThis paper investigates the performance evaluation of two state feedback controllers, Pole Placement (PP) and Linear Quadratic Regulator (LQR). The two controllers are designed for a Mass-Spring-Damper (MSD) system found in numerous applications to stabilize the MSD system performance and minimize the position tracking error of the system output. The state space model of the MSD system is first developed. Then, two meta-heuristic optimizations, Simulated Annealing (SA) optimization and Ant Colony (AC) optimization are utilized to optimize feedback gains matrix K of the PP and the weighting matrices Q and R of the LQR to make the MSD system reach stabilization and reduce the oscillation of the response. The Matlab softwar
... Show MoreLorraine Hansberry’s A Raisin in the Sun (1959) appeared at the beginning of renewed political activity on the part of the blacks; it is a pamphlet about the dream of recognition of black people and the confusion of purposes and means to reach such recognition. It embodies ideas that have been uncommon on the Broadway stage in any period. Situations such as a black family moving into an all-white neighborhood were not familiar before this time; they were just beginning to emerge. In depicting this so realistically, Hansberry depends more on her personal experience as an African American embittered by social prejudices and discrimination.
The speech recognition system has been widely used by many researchers using different
methods to fulfill a fast and accurate system. Speech signal recognition is a typical
classification problem, which generally includes two main parts: feature extraction and
classification. In this paper, a new approach to achieve speech recognition task is proposed by
using transformation techniques for feature extraction methods; namely, slantlet transform
(SLT), discrete wavelet transforms (DWT) type Daubechies Db1 and Db4. Furthermore, a
modified artificial neural network (ANN) with dynamic time warping (DTW) algorithm is
developed to train a speech recognition system to be used for classification and recognition
purposes. T