Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In addition, a bi-modal system for recognising emotions from facial expressions and speech signals is presented. This is important since one modality may not provide sufficient information or may not be available for any reason beyond operator control. To perform this, decision-level fusion is performed using a novel way for weighting according to the proportions of facial and speech impressions. The results show an average accuracy of 93.22 %.
The electronic payment systems are considered the most important infrastructure for the work of banks, particularly after a steady and remarkable development in information and communication technology, Which created the reality of the work of the infrastructure for these systems and these systems also become one of the most important components of infrastructure for the work of banks, cause it is one of the most important channels through which the transfer of cash, financial instruments between financial institutions in general and banking in particular.
In order to achieve the objectives of the research, the most important to identify the concept of electronic payment systems, and its divisions, and th
... Show MoreIn this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe
... Show Moreالنظام السياسي في كوريا الشمالة
In this paper, a subspace identification method for bilinear systems is used . Wherein a " three-block " and " four-block " subspace algorithms are used. In this algorithms the input signal to the system does not have to be white . Simulation of these algorithms shows that the " four-block " gives fast convergence and the dimensions of the matrices involved are significantly smaller so that the computational complexity is lower as a comparison with " three-block " algorithm .
Rotating fan shaft system was investigated experimentally and theoretically to study its dynamic performance. The type of oil used for the bearing was taken in consideration during the experimental program .Three types of oil were used, SAE 40, SAE 50 and degraded oil. During the experiments, the fan blades stagger angle was changed through angles (20˚, 30˚, 40˚, and 50˚). The shaft rotational speed also changed in the range of (0-3000 rpm). All these parameters have investigated for two cases (balanced and unbalanced fan). The performance parameters of the fan were found experimentally by measuring the fan, volume flow rate, Reynolds and Strouhal numbers, efficiency and pressure head. Analytical part was also represented to prepare
... Show More