New 2-amino thiazole ,oxodiazole, sulphonilamide and diazin derivatives of N-(α-chloro aceto)-3-(tolyl imino)-5-bromo-2-oxo-indole(2) have been synthesized .The preparation process started by the reaction of 5-bromo isatin with P-toluidine in the presence of glacial acetic acid and dimethylformamide(DMF) as a solvent to give 3-(tolyl imino)5-bromo-1H-indole-2-one.(1), Compound (1) with sodium hydride in dimethylformamide(DMF) at 0C0 gave a suspension of the sodium salt of Schiff base derivative and subsequent reaction with monochloroacetylchloride obtained the intermediate compound(2).Compound(2) was reacted with different reagents in four routes.The first route involved direct reaction with substituted 2-aminobenzothiazole under certain condition to give new compounds (3-8).The second route involved condensation compound(2) with 5-substiuted -2-amino 1,3,4-oxodiazole in the presence of anhydrous potassium carbonate to give new compounds(9-13),while the third route involved condensation compound (2) with para-chloro sulphonyl aniline to give a compound (14) which was treated to give new sulphonylamide compounds (15-19) with different primary aromatic amines in the fourth route compound (2) was treated with hydrazine hydrate in dimethylformaid(DMF) to give compound (20) ,the hydrazide derivatives(20)was reacted with different acid anhydrides in acetic acid as a solvent to give compounds (21-25). The Structure of newly synthesized compounds were identified by spectral methods [FTIR,1H-NMR]and measurements some of it’s physical properties and some specific reaction. Furthermore were studied the effects of the preparing compounds on some strains of bacteria and one yeast.
Amoxicillin have been conjugated with metronidazole as possible mutual prodrug to get a wider spectrum of activity by acting on aerobic and anaerobic bacteria, have antifungal activity, to provide protection for beta lactam ring of amoxicillin and also to improve patient compliance as it given as a single dose therapy. The structures of the synthesized compound were confirmed and characterized using elemental microanalysis (CHN), IR and some physiochemical properties. Biological study was done by using disc diffusion method against different bacterial strains which are , Staphylococcus aureus , Salmonella typhie , Pseudomonas aeruginosa , E. coli , Klebsiella pneumonia and fungi ( Candida albicans) . using nutrien
... Show MoreDiscotic liquid crystal compounds were synthesized and characterized. Liquid crystalline texture of these compounds was investigated by polarized optical microscopy (POM). The Hartree-Fock approximation (HF) was used to calculate theoretical molecular parameters for synthesized compounds such as optimization, hardness, EHOMO, ELUMO, and energy gap using the Gaussian 09W program.
The present study aimed to synthesize selenium nanoparticles (SeNPs) using aqueous extract of black currant as a reducing agent. The green synthesized black currant selenium nanoparticles (BCSeNPs) were identified by color change. The characterization of SeNPs was achieved by Ultraviolet-visible (UV–VIS) spectroscopy, scanning electron microscopy (SEM), X–ray diffraction analysis (XRD), and Fourier transform infrared spectroscopy (FTIR). These tests were used to detect: stability, morphology, size, crystalline nature, and functional groups present on the surface of BCSeNPs. The results revealed appearance of the brick-red color indicating the specific color of selenium nanoparticles, and UV-Vis spectroscopy showed band absorbanc
... Show MoreCarbon nanospheres (CNSs) were successfully prepared and synthesized by Catalytic Chemical Vapor Deposition (CCVD) by using camphor as carbon source only, over iron Cobalt (Fe-Co) saturated zeolite at temperature between (700 oC and 900 °C), with different concentrations of camphor, and reaction time. The synthesized CNSs were characterized using Scanning Electron Microscopy (SEM), X-ray diffraction spectroscopy (XRD), and Fourier Transform Infrared (FTIR). The carbon spheres in different sizes between 100 nm and 1000 nm were investigated. This work has done by two parts, first preparation of the metallic catalyst and second part formation CNSs by heat treatment.
Complexes of some metal ions with 2-thiotolylurea were prepared in ethanolic medium using (1:1) (Metal : Ligand) ratio yielded series of neutral complexes as the general formula [M(L)Cl2]. The prepared complexes were identified by atomic absorption FT.IR, UV-Visble spectra, molar conductivity and magnetic properties. From the above data the tetrahedral structure was suggested for all complexes.
Oxazine and quinazoline has a very important in organic chemistry especially in hetero cyclic fields. this research consist the preparation of 4H,4'H-2,2'-bibenzo[d][1,3]oxazine-4,4'-dione compound (1) from di acid chloride with 2-aminobenzoic acid in pyridine as solvent to give compound (2) 3,3'-diamino-2,2'- biquinazoline-4,4'(3H,3'H)-dione .compound 2 include free amino group .this compound was reacted with maleic and phthalic anhydride for synthesized of cyclic imide compounds (3,4).another reaction for compound 2 with some substituted aromatic aldehyde for prepared of some novel Schiff bases (5-9) contains quinazoline ring. compound 1 was treated with sulfathiazole and sulfadiazine for synthesized of sulfa compounds contains sulf
... Show MoreThe Mannich base ligand was synthesized in an ethanol medium through a condensation reaction of 2-mercaptobenzimidazole and ciprofloxacin at room temperature. Subsequently, several metal complexes of this ligand were prepared. To characterize both the base ligand and the metal complexes, various techniques were employed, including elemental analysis, FT-IR spectroscopy, UV-Vis spectroscopy, molar conductivity measurements, magnetic moment determination, and melting point analysis. The results were shown that the metal complexes formed have the formula [Cr(L)2Cl2] Cl.H2O and [Rh(L)2(H2O)2] Cl3.H2O, where L= mannich base ligand. Based on spectroscopic analytical, coordination with metal ions involves the 'N' donor atom of mannich base
... Show MoreGuanine has a variety of roles in chemistry, from its basic function in the storing and transferring genetic information to its usages in synthetic chemistry and other fields. Because of its distinct structure and biological importance, it is a fundamental component of contemporary study in organic chemistry and molecular biology. In this review, we focused on covering the synthetic pathways of various derivatives of guanine from the year 2000 until the present. As a result of the guanine molecule containing multiple functional groups, this gives us the ability to prepare several guanines such as O6-alkylating guanines, O6-benzylguanines, 8-aza-O6-benzylguanines, 9-substituted guanines, guanine-azo derivatives, guanine Schiff bases, guanin
... Show More