New isatinic hydrazone Schiff-base ligands, namely furan-2-carboxylic acid (2-oxo-1,2-dihydro-indol- 3-ylidene)-hydrazide (L1), thiophene-2-carboxylic acid (2- oxo-1,2-dihydro-indol-3-ylidene)-hydrazide (L2) and 2-(pyridine-2-yl-hydrazono)-1,2-dihydro-indol-3-one) (L3) are reported. The ligands were prepared by the condensation of furan-2-carboxylic acid hydrazide (L1), thiophene- 2-carboxylic acid hydrazide (L2), and 2-hydrazino pyridine (L3) with isatine. Monomeric complexes were prepared from the reaction of the corresponding metal chloride with the ligands. The ligands and their nine new complexes of the general formulae [M(Ln)2]Cl2 [where M = Co(II), Zn(II) and Cd(II); n = L1, L2 and L3] were characterised by spectroscopic methods (FTIR, UV–Vis, 1H, 13C NMR), elemental analysis, metal content, magnetic measurement and molar conductance. These studies revealed the formation of six coordinate complexes, in which the geometry about metal atom is a distorted octahedral. Biological activity of the ligands and their metal complexes against Gram-positive bacterial strain Bacillus (G?) and Gramnegative bacteria Ecoli (G-) are evaluated. The effects of prepared compounds depend on the type of tested bacteria. It is clear that the ligands and their metal complexes have a potential effect on the Gram-positive (G?) and Gramnegative (G-) strains of the tested bacteria.
Abstract: New copper(II) complexes with mixed ligand benziloxime (BOxH) and furfural-dehydeazine (FA) using classical (with and without solvent) and microwave heating methods have been prepared. The resulting complexes have been characterized using physico-chemical techniques. The study suggested that the ligands formed neutral complexes had general formulas [Cu(FA)(BOXH)(Ac)2] and [Cu(FA)(BOX)(OH)] in neutral (or acidic) and basic medium, respectively. Accordingly, hexa-coordinated mono-nuclear complexes have been investigated by this study and having distorted octahedral geometry. The effect of laser have been studied on solid ligands and solid complexes, no effect have been observed on most compounds through the results of melting poin
... Show MoreThe research includes the preparation of several complexes of the internal transition elements lanthanide (Ln = La, Nd, Er, Gd, and Dy) containing the 4f shell, with Schiff bases resulting from condensation reactions between 4-antipyrinecarboxaldehyde and 2-aminobenzothiazoles. Schiff's base was identified using FTIR spectra, UV-vis spectroscopy, elemental microanalysis CHNSO, nuclear magnetic resonance, mass spectrometry, and TGA thermal analysis. The complexes were studied and identified with elemental microanalysis CHNSO, FTIR spectroscopy, UV-vis spectroscopy, TGA thermal analysis, conductivity measurement, and magnetic sensitivity. The result showed that these complexes were classified as homogeneous bidentate complexes with th
... Show MoreNew bidentate dithiocarbamate ligand (NaL) namely [Sodium-2-(((3-methyl -4- “(2,2,2-tri fluoro ethoxy) pyridin-2”-yl) methyl) sulfinyl)-1H-benzoimidazole -1-carbodithioate] was prepared. This free ligand was synthesized from the reaction of a (RS)-2-([3-methyl -4-(2,2,2-tri fluoroethoxy) pyridin-2-yl] methyl sulfinyl)-1H benzoimidazole, CS2 and NaOH in methanol as solvent. From reaction of dithiocarbamate salt (NaL) with metal ions (M); Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pd(II)”, have obtained the DTC complexes at general molecular formula [M(L)2(H2O)2] and [Pd(L)2]. To characterize the ligand and its complexes, used different analyses methods such FTIR, UV-Vis, elemental microanalysis, atomic absoreption, magnetic susceptibil
... Show MoreThe Ligand 6,6--(1,2-benzenediazo) bis (3-aminobenzoicacid) derived from o-phenylenediamine and 3-aminobenzoicacid was synthesized. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the ligand with the following metal ions (CoII, NiII, CuII and ZnII ) in aqueous ethanol with a 1:1 M:L ratio and at optimum pH. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR and UV-Vis, as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). H
... Show MoreA variety of new phenolic Schiff bases derivatives have been synthesized starting from Terephthaladehyde compound, all proposed structures were supported by FTIR, 1H-NMR, 13C-NMR, Elemental analysis, some derivatives evaluated by Thermal analysis (TGA).
تم تحضير ثلاث معقدات جديدة Ni (II)و Cu (II) و Zn (II) باستخدام الليكند المحضر الجديد من تفاعل حامض مالونيك ثنائي هيدرازايد مع 2-بيريدين كربوكسالديهايد. حيث شخصت المعقدات لمحضرة وكذلك الليكند باستخدام تقنيات مختلفة مثل FT-IR و UV-Vis و Mass و 1H-NMR و 13C-NMR وتحليل العناصر CHN و تقدير محتوى الكلور والموصلية المولارية والحساسية المغناطيسية والامتصاص الذري لتشخيص هذه المركبات. لكل معقد محضر جديد من النيكل والنحاس والزنك ، كشفت نتائج ا
... Show MoreA first step in this research was to synthesize Schiff's bases(1-3)using an Amoxcilline intensification reaction with different aromatic aldehydes in absolute ethanol. In benzene and refluxing conditions,Schiff's bases were cyclized with succinic and Phthalic anhydride to give a new sequence of 1,3-oxazepine derivatives(4-6) and (7-9),respectively.The last step,cyclization reactions with sodium azide in THF solvent resulted in the formation of [10 and 11], which are supposed to be biologically significant.FT.IR, 1H-NMR and 13C-NMR (for compound 4,7,9, and 11),as well as melting points reported, were used to characterize these prepared compounds ,Bacillus (G+), Staphylococcus (G+), and E.Coli (G-)were screened against these compounds. . To i
... Show MoreObjective: This study involved the synthesis of new Schiff bases and 1,3-oxazepine derivatives from the baclofen drug and study the anticancer activities. Methods: Baclofen was initially reacted with aromatic aldehydes to create Schiff base derivatives (Ia–Ib), which were then closed in the next step using anhydrous acids to form oxazepine derivatives (IIa–IId). Results: The title compounds were synthesized successfully and identified using FT-IR, 1H NMR, and 13C NMR spectroscopy. Additionally, compound (IIc)’s (3-(4-chloro-phenyl)-4-[2-(4nitro-phenyl)-4,7-dioxo-4,7-dihydro-[1,3] oxazepin-3-yl]butyric acid) anticancer activity was assessed using MTT assay against FTC-133 (thyroid cancer) compared with WRL-68 (normal cell line). Discus
... Show More