The accuracy of the Moment Method for imposing no-slip boundary conditions in the lattice Boltzmann algorithm is investigated numerically using lid-driven cavity flow. Boundary conditions are imposed directly upon the hydrodynamic moments of the lattice Boltzmann equations, rather than the distribution functions, to ensure the constraints are satisfied precisely at grid points. Both single and multiple relaxation time models are applied. The results are in excellent agreement with data obtained from state-of-the-art numerical methods and are shown to converge with second order accuracy in grid spacing.
This paper is concerned with finding the approximation solution (APPS) of a certain type of nonlinear hyperbolic boundary value problem (NOLHYBVP). The given BVP is written in its discrete (DI) weak form (WEF), and is proved that it has a unique APPS, which is obtained via the mixed Galerkin finite element method (GFE) with implicit method (MGFEIM) that reduces the problem to solve the Galerkin nonlinear algebraic system (GNAS). In this part, the predictor and the corrector technique (PT and CT) are proved convergent and are used to transform the obtained GNAS to linear (GLAS ), then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are studied. The results
... Show MoreObjective conditions for the possibility of punishment are legal or material facts –positive or negative that depart from the activity of the offender. The legislator comments on their subsequent verification on the formation of some crimes the possibility of.The application of punishment to the offender , but although they are facts of an object nature that approach and overlap with many systems and cases , they are distinguished by a certain subjectivity that differentiates them from each case that may seem similar or approach them. To clarify the ambiguity that may surround these conditions , Which may lead to confusion between them and what be similar to other cases due to the common effect that they have in common , which is the f
... Show MoreA new method based on the Touchard polynomials (TPs) was presented for the numerical solution of the linear Fredholm integro-differential equation (FIDE) of the first order and second kind with condition. The derivative and integration of the (TPs) were simply obtained. The convergence analysis of the presented method was given and the applicability was proved by some numerical examples. The results obtained in this method are compared with other known results.
The behavior and shear strength of full-scale (T-section) reinforced concrete deep beams, designed according to the strut-and-tie approach of ACI Code-19 specifications, with various large web openings were investigated in this paper. A total of 7 deep beam specimens with identical shear span-to-depth ratios have been tested under mid-span concentrated load applied monotonically until beam failure. The main variables studied were the effects of width and depth of the web openings on deep beam performance. Experimental data results were calibrated with the strut-and-tie approach, adopted by ACI 318-19 code for the design of deep beams. The provided strut-and-tie design model in ACI 318-19 code provision was assessed and found to be u
... Show MoreIn this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional dispersion equation. The algorithm for the numerical solution of this equation is based on explicit finite difference approximation. Consistency, conditional stability, and convergence of this numerical method are described. Finally, numerical example is presented to show the dispersion behavior according to the order of the fractional derivative and we demonstrate that our explicit finite difference approximation is a computationally efficient method for solving two-dimensional fractional dispersion equation
We studied the effect of certain environmental conditions for removing heavy metal elements from contaminated aqueous solutions (Cd, Cu, Pb, Fe, Zn, Ni, Cr) using the bacterium Bacillus subtilis to appoint the optimal conditions for removal ,The best optimum temperature range for two isolate was 30-35○C while the hydrogen number for the maximum mineral removal range was 6-7. The best primary mineral removal was 100 mg/L, while the maximum removal for all minerals was obtained after 6 hrs of Cu element time and the maximum removal efficiency was obtained after 24 hrs of Cu element. The results have proved that the best aeration for maximum removal was obtained at rotation speed of 150 rpm/minute. Inoculums of 5ml/100ml which contained 1
... Show More This study is a try to compare between the traditional Schwarzschild’s radius and the equation of Schwarzschild’s radius including the photon’s wavelength that is suggested by Kanarev for black holes to correct the error in the calculation of the gravitational radius where the wavelengths of the electromagnetic radiation will be in our calculation. By using the different wavelengths; from radio waves to gamma ray for arbitrary black holes (ordinary and supermassive).
The adsorption of Ru and Ce were carried out using manganese dioxide as adsorbent. The Optimization of the adsorption conditions were studied as a function of shaking time, nitric acid, metal ions, concentrations and temperature effects. A rapid initial adsorption on MnO2 is followed by a steady and slow increase of metal uptake. The equilibration time is reached after four hours shaking for Ru and Ce and the adsorption is much better from one molar acidic solution and 90°C.