The presence of construction wastes such as clay bricks, glass, wood, plastic, and others in large quantities causes serious environmental problems in the world. Where these wastes can be used to preserve the natural resources used in construction and reduce the impact of this problem on the environment, it also works to reduce the problem of high loads of concrete blocks. Clay bricks aggregate (AB) can be recycled as coarse aggregate and replaced with volumetric proportions of coarse aggregate by ( 5% and 10%), as well as the use of clay brick powder (PB) by replacing its weight of cement (5% and 10%) and reduced in the manufacture of concrete blocks (blocks). Four mixtures will be prepared and tested to learn how to re
... Show MoreMoisture damage is a primary mode of distress occurring in hot mix asphalt (HMA) pavements in Iraq. Because of the loss of bond, or stripping, caused by the presence of moisture between the asphalt and aggregate, which is a problem in some areas and can be severe in some cases, it is requires to evaluate the design asphalt mixture to moisture susceptibility. Many factors such as aggregate characteristics, asphalt characteristics, environment, traffic, construction practices and drainage can contribute to stripping. Asphalt concrete mixes were prepared at their optimum asphalt content by superpave system and then tested to evaluate their engineering properties, which include tensile strength, resilient modulus, and perman
... Show MoreIn this study, plain concrete simply supported beams subjected to two points loading were analyzed for the flexure. The numerical model of the beam was constructed in the meso-scale representation of concrete as a two phasic material (aggregate, and mortar). The fracture process of the concrete beams under loading was investigated in the laboratory as well as by the numerical models. The Extended Finite Element Method (XFEM) was employed for the treatment of the discontinuities that appeared during the fracture process in concrete. Finite element method with the feature standard/explicitlywas utilized for the numerical analysis. Aggregate particles were assumedof elliptic shape. Other properties such as grading and sizes of the aggr
... Show More The performance of asphalt concrete pavement has affected by many factors, the temperature is the most important environmental one which has a large effect on the structural behavior of flexible pavement materials. The main cause of premature failure of pavement is the rutting, Due to the viscoelastic nature of the asphalt cement, rutting is more pronounced in hot climate areas because the viscosity of the asphalt binder which is
inversely related to rutting is significantly reduced with the increase in temperature resulting in a more rut susceptible paving mixtures. The objective of this study is to determine the effect of temperatures variations on the permanent deformation parameters (perm
Modified asphalt is considered one of the alternatives to address the problems of deficiencies in traditional asphalt concrete, as modified asphalt addresses many of the issues that appear on the pavement layers in asphalt concrete, resulting from heavy traffic and vehicles loaded with loads that exceed the design loads and the large fluctuations in the daily and seasonal temperatures of asphalt concrete. The current study examined the role of polyphosphoric acid (PPA) as a modified material for virgin asphalt when it was added in different proportions (1%, 2%, 3%, 4%) of the asphalt weight. The experimental program includes the volumetric characteristics associated with the Marshall test, the physical properties, and th
... Show MoreThe aim of this study is to propose mathematical expressions for estimation of the flexural strength of plain concrete members from ultrasonic pulse velocity (UPV) measurements. More than two hundred pieces of precast concrete kerb units were subjected to a scheduled test program. The tests were divided into two categories; non-destructive ultrasonic and bending or rupture tests. For each precast unit, direct and indirect (surface) ultrasonic pulses were subjected to the concrete media to measure their travel velocities. The results of the tests were monitored in two graphs so that two mathematical relationships can be drawn. Direct pulse velocity versus the flexural strength was given in the first relationship while the second equation des
... Show MoreThe main aim of this research paper is investigating the effectiveness and validity of Meso-Scale Approach (MSA) as a modern technique for the modeling of plain concrete beams. Simply supported plain concrete beam was subjected to two-point loading to detect the response in flexural. Experimentally, a concrete mix was designed and prepared to produce three similar standard concrete prisms for flexural testing. The coarse aggregate used in this mix was crushed aggregate. Numerical Finite Element Analysis (FEA) was conducted on the same concrete beam using the meso-scale modeling. The numerical model was constructed to be a bi-phasic material consisting of cement mortar and coarse aggregate. The interface between the two c
... Show MoreIn this paper, a methodology is presented for determining the stress and strain in structural concrete sections, also, for estimating the ultimate combination of axial forces and bending moments that produce failure. The structural concrete member may have a cross-section with an arbitrary configuration, the concrete region may consist of a set of subregions having different characteristics (i.e., different grades of concretes, or initially identical, but working with different stress-strain diagrams due to the effect of indirect reinforcement or the effect of confinement, etc.). This methodology is considering the tensile strain softening and tension stiffening of concrete in additio