The combined system of electrocoagulation (EC) and electro-oxidation (EO) is one of the most promising methods in dye removal. In this work, a solution of 200 mg/l of Congo red was used to examine the removal of anionic dye using an EC-EO system with three stainless steel electrodes as the auxiliary electrodes and an aluminum electrode as anode for the EC process, Cu-Mn-Ni Nanocomposite as anode for the EO process. This composite oxide was simultaneously synthesized by anodic and cathodic deposition of Cu (NO3)2, MnCl2, and Ni (NO3)2 salts with 0.075 M as concentrations of each salt with a fixed molar ratio (1:1:1) at a constant current density of 25 mA/cm2. The characteristics structure and surface morphology of the deposited nano oxides onto the graphite substrates were determined by (XRD), (FE-SEM), (AFM), and (EDX). The results shown that nano Cu-Mn-Ni oxides were successfully deposited onto the anode and cathode. The crystal size and root mean square for the cathode were 30.79 nm and 79.36 nm, respectively, while for the anode, they were 24.19 nm and 41.88 nm, respectively. Furthermore, the combined system was examined for C.D, NaCl concentration, and time. In the EC-EO combined system, the cathode and anode were efficient when used as anodes for the EO process, besides aluminum. The cathode was more effective in the removal process than the anode due to its larger crystal size and the rough, granular shape of its surface. When current density (C.D) increased from 3 to 6 mA/cm², the removal efficiency shifted from 95% to 98%. However, excellent removal of 98% and 96.5% was attained with 1.665 and 2.0859 kWh/kg of dye as energy consumption in the presence and absence of NaCl salt, respectively by applying 6 mA/cm2 within 20 min of electrolysis.
Hydrogen sulfide removal catalyst was prepared chemically by precipitation of zinc bicarbonate at a controlled pH. The physical and chemical catalyst characterization properties were investigated. The catalyst was tested for its activity in adsorption of H2S using a plant that generates the H2S from naphtha hydrodesulphurization and a unit for the adsorption of H2S. The results comparison between the prepared and commercial catalysts revealed that the chemical method can be used to prepare the catalyst with a very good activity.
It has observed that the hydrogen sulfide removal over zinc oxide catalyst follows first order reaction kinetics with activation energy of 19.26 kJ/mole and enthalpy and e
... Show MoreIn this research prepared two composite materials , the first prepared from unsaturated polyester resin (UP) , which is a matrix , and aluminum oxide (Al2O3) , and the second prepared from unsaturated polyester resin and aluminum oxide and copper oxide (CuO) , the two composites materials (Alone and Hybrid) of percentage weight (5,10,15)% . All samples were prepared by hand layup process, and study the electrical and thermal conductivity. The results showed decrease electrical conductivity from (10 - 2.39) ×10-15 for (Up+ Al2O3) and from (10 - 2.06)×10-15 for (Up+ Al2O3+ CuO) .But increase thermal conductivity from( 0.17 - 0.505) for (Up+ Al2O3) and from (0.17 - 0.489) for (Up+ Al2O3+ CuO).
In this study, Laser Shock Peening (LSP) effect on the polymeric composite materials has been investigated experimentally. Polymeric composite materials are widely used because they are easy to fabricate and have many attractive features. Unsaturated polyester resin as a matrix was selected and Aluminum powder with micro particles as a reinforcement material was used with different volume fraction (2.5%, 5% and 7.5%). Hand lay-up process was used for preparation the composites. Fatigue test with constant amplitude with stress ratio (R =-1) was carried out before and after LSP process with two levels of energy (1Joule and 2Joule). The result showed an increase in the endurance strength of 25.448% at 7.5% volume fraction when peened is 1J
... Show MoreThis work is focused on the design parameters and activity of artificial human finger for seven grips. At first, obtained the ideal kinematics of human fingers motion by analyzing the grips video which were recorded using a single digital camera recorder fitted on a tripod in sagital plane while the hand is moving. Special motion analysis software (Dartfish) the finger joint angles were studied using the video recording. Then the seven grips were modeled using static torque analysis, which calculates the amount of torque applied on the fingers joint grip depending on the results of the kinematic analysis. The last step of the work was to design the actuator (Muscle Wire) of artificial finger for the seven grips in a simple design approac
... Show MoreIf the Industrial Revolution has enabled the replacement of humans with machines, the digital revolution is moving towards replacing our brains with artificial intelligence, so it is necessary to consider how this radical transformation affects the graphic design ecosystem. Hence, the research problem emerged (what are the effects of artificial intelligence on graphic design) and the research aimed to know the capabilities and effects of artificial intelligence applications in graphic design, and the study dealt in its theoretical framework with two main axes, the first is the concept of artificial intelligence, and the second is artificial intelligence applications in graphic design. The descriptive approach adopted a method of content
... Show MoreAs population growth increases the demand for crops increases and their quality improves, and it becomes necessary to find innovative and modern solutions to enhance production. In this context, artificial intelligence plays a pivotal role in developing new technologies to improve crop sorting and increase agricultural yields. The present review discusses the main differences between manual and mechanical potato harvesting, explaining the advantages and disadvantages of each method. Manual harvesting is highlighted as a traditional method that allows for greater precision in handling the crop, but it requires more time and effort. In contrast, mechanical harvesting provides greater efficiency and speed in the process, but it may damage some
... Show MoreThis study specifically contributes to the urgent need for novel methods in Training of Trainers (ToT) programs which can be more effective and efficient through incorporation of AI tools. By exploring scenarios in which AI could be used to dramatically advance trainer preparation, knowledge-sharing, and skill-building across sectors, the research aims to understand the possibility. This study uses a mixed-methods approach, it surveys 500 trainers and conducts in-depth interviews with a further 50 ToT program directors across diverse industries to evaluate the impact of AI-enhanced ToT programs. The results showcase that the use of AI has a substantial positive effect on trainer performance and program outcomes. AI-enhanced ToT programs, fo
... Show More