Objective: The aim of this study was to formulate and in vitro evaluate fast dissolving oral film of practically insoluble bromocriptine mesylate to enhance its solubility and to improve its oral bioavailability by avoiding first pass effect as well as to produce an immediate release action of the drug from the film for an efficient management of diabetes mellitus type II in addition to an improvement of the patient compliance to this patient- friendly dosage form. Methods: The films were prepared by the solvent casting method using hydroxypropyl methylcellulose of grades (E3, E5, E15), polyvinyl alcohol (PVA), pectin and gelatin as film-forming polymers in addition to polyethene glycol 400 (PEG400), propylene glycol (PG) and glycerin were used as a plasticizer. Poloxamer 407 was used as a surfactant, sodium saccharin as a sweetening agent, citric acid as a saliva stimulating agent, vanilla as a flavouring agent and crospovidone as a super disintegrant. The prepared films then tested for physical characterization, thickness, weight uniformity, mechanical characteristics (folding endurance, tensile strength, percent elongation and Young's modulus), surface pH, in vitro disintegration time, drug content and an in vitro drug release. Results: Films were found to be satisfactory when evaluated for physical characterization, thickness, weight uniformity, mechanical tests, in vitro disintegration time, folding endurance, drug content and an in vitro drug release. The surface pH of all the films was found to be neutral or minor change. Films in vitro drug release studies were also done using USP dissolution apparatus type II (paddle type). The in vitro drug release profile in the optimized formulation F14 was gave 86.8 % of drug released at 2 min. The optimized formulation F14 was also showed satisfactory pH (6.2±0.2), drug content (99.2±0.5%), the disintegration time of 9.2±0.1 seconds and the time needed for 80% of medication to be released (T80 %) was 1.35 minute. Conclusion: The bromocriptine mesylate fast dissolving oral film was formulated. The given film disintegrates within nine seconds which release the drug rapidly and gives an action.
Background: Simvastatin (SIM) is a lipid-lowering agent to prevent disorders caused by clogged blood vessels. Because of its low solubility, it has low bioavailability. The adsorption technique is effective in improving drug solubility and dissolution rate. Objective: To use magnesium aluminum silicate (MAS) as an adsorbent in combination with Soluplus® as a hydrophilic polymer to formulate SIM as immediate-release tablets (IRTs). Methods: We used the solvent evaporation method to make MAS-loaded SIM in the presence of Soluplus®, making sure that the ratio of SIM to MAS to SOLU was 1:6:3. We then used this mixture to make IRTs. Using the direct compression method, we made all of the SIM-IRT formulas. We used diluents like Avicel
... Show MoreOrphenadrine is an anticholinergic ,antimuscarinic , centrally acting skeletal muscle relaxant .It presents in the form of citrate and HCl salts which are used in treatment of the symptoms of mild Parkinson's disease and also it is used as adjuvant with other drugs in the therapy .
Many trials were made to formulate Orphenadrine citrate as a plain tablet using wet granulation or direct compression technique in order to get a satisfactory formula through studying the effect of various factors such as binders , diluents and disintegrants types .
The best formula was obtained by using Poly Vinyl Pyrolidine (PVP) as a binder also the results indicated that starch and mannitol
... Show MoreNystatin is the drug of choice for treatment of cutaneous fungal infections with main disadvantage that is the need for multiple applications to achieve complete eradication which may reduce patient compliance. Microparticles offer a solution for such issue as they are one of sustained release preparations that achieve slow release of drug over an extended period of time. The objectives of this study were to fabricate nystatin-loaded chitosan microparticles with the ultimate goal of prolonging drug release and to analyze the influence of polymer concentration on various properties of microparticles. Microparticles were prepared by chemical cross-linking method using glutaraldehyde as cross-linking agent. Five formulas, namely N1C1, N1C2,
... Show MoreSilybum marianum, from which silymarin (SM) is extracted, is a medicinal herb. In the Biopharmaceutics Classification System, it is of the class II type, meaning it is almost completely insoluble in water. It has a number of therapeutic properties, including anti-inflammatory as well as properties that promote wound healing.
This research target is to promote the dissolution and solubility of SM by employing a technique called solid dispersion and then incorporating the formula of solid dispersion into a topical gel that can be used for wound healing.
Solid dispersion is a technique used to enhance solubility and dissolve pharmaceuticals that are not water-soluble. This method is widely used because of its low cos
... Show MoreThe present study is to formulate and evaluate Acyclovir (ACV) microspheres using natural polymers like chitosan and sodium alginate. ACV is a DNA polymerase inhibitor used in treating herpes simplex virus infection and zoster varicella infections. Acyclovir is a suitable candidate for sustained-release (SR) administration as a result of its dosage regimen twice or thrice a day and relatively short plasma half-life (approximately 2 to 4 hours). Microspheres of ACV were prepared by an ionic dilution method using chitosan and sodium alginate as polymers. The prepared ACV microspheres were then subjected to FTIR, SEM, particle size, % yield, entrapment efficiency, in vitro dissolution studies and release kinetics mechanism. The FTI
... Show MoreThe aim of this study is to formulate and evaluate ezetimibe nanoparticles using solvent antisolvent technology. Ezetimibe is a practically water-insoluble drug which acts as a lipid lowering drug that selectively inhibits the intestinal absorption of cholesterol and related phytosterols. Ezetimibe prepared as nano particles in order to improve its solubility and dissolution rate.
Thirty formulas were prepared and different stabilizing agents were used with different concentrations such as poly vinyl pyrrolidone (PVPK-30), poly vinyl alcohol (PVA), hydroxy propyl methyl cellulose E5 (HPMC), and poloxamer. The ratios of drug to stabilizers used to prepare the nanoparticles were 1: 2, 1:3 and 1:4.
The prepared nanoparticles
... Show MoreObjective: The objective of this study was to prepare nanosuspension of a practical water insoluble antiulcer drug which is lafutidine to enhance the solubility, dissolution rate with studying the effect of different formulation variables to obtain the best formula with appropriate physical properties and higher dissolution rate.Methods: Nanosuspension of lafutidine was prepared using solvent anti-solvent precipitation method using Polyvinylpyrrolidone K-90(PVP K-90) as the stabilizer. Ten formulations were prepared to show the effect of different variables in which two formulations showed the effect of stabilizer type, three formulations showed the effect of stabilizer concentration, two formulations showed the effect of combinatio
... Show More