BACKGROUND: Carcinoma of urinary bladder is one of the most common malignancies worldwide and constitutes a major health problem. Multiple risk factors are associated with this tumor and its prognosis will depend on different clinicopathological parameters. Over expression of P53 protein and mutant Rb gene is associated with more aggressive clinical and histopathological features of the tumor such as advanced stage and higher grade. AIM: The immunohistochemical expression of Rb gene and P53 gene will be assessed through their protein products in transitional cell carcinoma (TCC) of the urinary bladder and then will be correlated with other well-known risk factors and prognostic parameters of bladder TCC, such as grading, tumor size, smoking, alcohol drinking, and family history. METHODS: Patients were recruited from the uro-surgical department/Surgical Subspecialties Teaching Hospital during the period from November 2020 through April 2021. In this study, patients enrolled were those suspected to have bladder carcinoma. The work up included a full history and clinical examination. Surgical samples were taken from the patients for histopathological evaluation; the study’s samples represented either endoscopic cup biopsy, transurethral resection of the tumor, or radical cystectomy. Sections obtained from these samples were stained with the conventional hematoxylin and eosin stain. Then, immunohistochemical staining for P53 and pRB was applied only for patients diagnosed with TCC. RESULTS: The differences between low-grade and high-grade tumors regarding pRb percentage score were statistically significant (p = 0.026), but were not significant regarding the intensity score (p = 0.094). There were significant correlations between tumor stage and both pRb intensity and percentage scores (p = 0.044 and 0.042, respectively). Differences between low-grade and high-grade tumors regarding p53 intensity score were significant (p = 0.022). The differences between low-grade and high-grade tumors regarding p53 percentage score were significant (p = 0.049). The differences between different tumor stages regarding p53 intensity score were significant (p = 0.018). The differences between different tumor stages regarding P53 percentage score were significant (p = 0.019). CONCLUSIONS: Tumor’s grade was found to be correlated with the tumor stage with no correlation with the age, gender, smoking, family history of TCC, history of urinary tract infection, bladder stones, nor the recurrence of the tumor. The pRb intensity and the percentage scores were correlated to each other and to tumor’s grade and stage, except for the pRb intensity which showed no correlation with the tumor’s grade. The P53 intensity and percentage scores were correlated to each other and also to tumor’s grade and stage, so that P53 is over-expressed in tumors with higher grade and stage.
In this paper, an inexpensive, simple and well-accurate process of the generation of bimetallic silver Ag//gold Au core//shell is colloidal metal nanoparticles (MNPs). This is achieved via an atmospheric pressure non-thermal plasma glow discharge between two electrodes. One of these electrodes is a capillary tube placing over solution about (1 cm) that acts as the cathode, while the other electrode is a metal disk immersed in the solution and acts as an anode. Glow discharge process carried out at room temperature using a home-made cell with (6 KV) applied voltage and direct current (DC) about (1.8 mA) for different discharge periods. A wide range of bimetallic Ag//Au colloidal MNPs was rapidly synthesized as a result of non-thermal plas
... Show MoreConcrete columns with hollow-core sections find widespread application owing to their excellent structural efficiency and efficient material utilization. However, corrosion poses a challenge in concrete buildings with steel reinforcement. This paper explores the possibility of using glass fiber-reinforced polymer (GFRP) reinforcement as a non-corrosive and economically viable substitute for steel reinforcement in short square hollow concrete columns. Twelve hollow short columns were meticulously prepared in the laboratory experiments and subjected to pure axial compressive loads until failure. All columns featured a hollow square section with exterior dimensions of (180 × 180) mm and 900 mm height. The columns were categorized into
... Show MoreGas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t
As a result of rapid industrialization and population development, toxic chemicals have been introduced into water systems in recent decades. Because of its excellent efficiency and simple design, the three-dimensional (3D) electro-Fenton method has been used for the treatment of wastewater. The goal of the current study is to explore the efficiency of phenol removal by the 3D electro-Fenton process, which is one of the advanced oxidation processes (AOPs). In the present work, the effect of the addition of granular activated carbon (GAC) particles to the electro-Fenton system as the third electrode would be investigated in the presence of graphite as the anode and nickel foam as the cathode, which is the source of electro-generated hydrogen
... Show MoreThe present paper addresses cultivation of Chlorella vulgaris microalgae using airlift photobioreactor that sparged with 5% CO 2 /air. The experimental data were compared with that obtained from bioreactor aerated with air and unsparged bioreactor. The results showed that the concentration of biomass is 0.36 g l -1 in sparged bioreactor with CO2/air, while, the concentration of biomass reached to 0.069 g l -1 in the unsparged bioreactor. They showed also that aerated ioreactor.with CO2/air gives more biomass production even the bioreactor was aerated with air. This study proved that application of sparging system for ultivation of Chlorella vulgaris microalgae using either CO2/air mixture or air has a significant
... Show MoreA true random TTL pulse generator was implemented and investigated for quantum key distribution systems. The random TTL signals are generated by low cost components available in the local markets. The TTL signals are obtained by using true random binary sequences based on registering photon arrival time difference registered in coincidence windows between two single – photon detectors. The true random TTL pulse generator performance was tested by using time to digital converters which gives accurate readings for photon arrival time. The proposed true random pulse TTL generator can be used in any quantum -key distribution system for random operation of the transmitters for these systems
A new simple and sensitive spectrophotometric method for the determination of trace amount of Cu(II) in the ethanol solution have been developed. The method is based on the complexation of Cu(II) with ethyl cyano(2-methyl carboxylate phenyl azo acetate) (ECA) in basic medium of sodium hydroxide givining maximum absorbance at (λmax = 521 nm). Beer's law is obeyed over the concentration range (5-50) (μg / ml) with molar absorptivity of (3.1773 × 102 L mol-1 cm-1) and correlation coefficient (0.9989). The optimum conditions for the determination of Cu(II)-complex and have been studied and applied to determine Cu(II) in synthetic water sample using simple and standard addition methods.
A newly derivative of oxazolidin-5- one namely [2-(2-biphenyl-4-yl-imidazo [1,2-a] pyridine-3-yl)-3-(4-nitro-phenyl)-oxazolidin-5-one (BIPNO5)] was examined as an corrosion inhibitor for carbon steel surface. Quantum mechanical method of Density Functional Theory (DFT) with (B3LYP (6-311++G (2d, 2p)) level of theory was used to calculate the minimize structure, physical properties and inhibition chemical parameters, in vacuum and two solvents (DMSO and H2O), all at equilibrium geometry. The results indicated that the new derivative could adsorb on the surface of carbon steel through the heteroatom, showing that the new inhibitor has good corrosion inhibition performance.