BACKGROUND: Carcinoma of urinary bladder is one of the most common malignancies worldwide and constitutes a major health problem. Multiple risk factors are associated with this tumor and its prognosis will depend on different clinicopathological parameters. Over expression of P53 protein and mutant Rb gene is associated with more aggressive clinical and histopathological features of the tumor such as advanced stage and higher grade. AIM: The immunohistochemical expression of Rb gene and P53 gene will be assessed through their protein products in transitional cell carcinoma (TCC) of the urinary bladder and then will be correlated with other well-known risk factors and prognostic parameters of bladder TCC, such as grading, tumor size, smoking, alcohol drinking, and family history. METHODS: Patients were recruited from the uro-surgical department/Surgical Subspecialties Teaching Hospital during the period from November 2020 through April 2021. In this study, patients enrolled were those suspected to have bladder carcinoma. The work up included a full history and clinical examination. Surgical samples were taken from the patients for histopathological evaluation; the study’s samples represented either endoscopic cup biopsy, transurethral resection of the tumor, or radical cystectomy. Sections obtained from these samples were stained with the conventional hematoxylin and eosin stain. Then, immunohistochemical staining for P53 and pRB was applied only for patients diagnosed with TCC. RESULTS: The differences between low-grade and high-grade tumors regarding pRb percentage score were statistically significant (p = 0.026), but were not significant regarding the intensity score (p = 0.094). There were significant correlations between tumor stage and both pRb intensity and percentage scores (p = 0.044 and 0.042, respectively). Differences between low-grade and high-grade tumors regarding p53 intensity score were significant (p = 0.022). The differences between low-grade and high-grade tumors regarding p53 percentage score were significant (p = 0.049). The differences between different tumor stages regarding p53 intensity score were significant (p = 0.018). The differences between different tumor stages regarding P53 percentage score were significant (p = 0.019). CONCLUSIONS: Tumor’s grade was found to be correlated with the tumor stage with no correlation with the age, gender, smoking, family history of TCC, history of urinary tract infection, bladder stones, nor the recurrence of the tumor. The pRb intensity and the percentage scores were correlated to each other and to tumor’s grade and stage, except for the pRb intensity which showed no correlation with the tumor’s grade. The P53 intensity and percentage scores were correlated to each other and also to tumor’s grade and stage, so that P53 is over-expressed in tumors with higher grade and stage.
This study is aimed to Green-synthesize and characterize Al NPs from Clove (Syzygium aromaticum
L.) buds plant extract and to investigate their effect on isolated and characterized Salmonella enterica growth.
S. aromaticum buds aqueous extract was prepared from local market clove, then mixed with Aluminum nitrate
Al(NO3)3. 9 H2O, 99.9% in ¼ ratio for green-synthesizing of Al NPs. Color change was a primary confirmation
of Al NPs biosynthesis. The biosynthesized nanoparticles were identified and characterized by AFM, SEM,
EDX and UV–Visible spectrophotometer. AFM data recorded 122nm particles size and the surface roughness
RMs) of the pure S. aromaticum buds aqueous extract recorded 17.5nm particles s
In this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.
The insulation system of a machine coil includes several layers made of materials with different characteristics. The effective insulation design of machine coils, especially in the machine end winding, depends upon an accurate model of the stress grading system. This paper proposes a modeling approach to predict the transient overvoltage, electric field, and heat generation in machine coils with a stress grading system, considering the variation of physical properties in the insulation layers. A non-uniform line model is used to divide the coil in different segments based on material properties and lengths: overhang, stress grading and slot. The cascaded connection of chain matrices is used to connect segments for the representation of the
... Show MoreBiodiesel is an environmentally friendly fuel and a good substitution for the fossil fuel. However, the purity of this fuel is a major concern that challenges researchers. In this study, a calcium oxide based catalyst has been prepared from local waste eggshells by the calcination method and tested in production biodiesel. The eggshells were powdered and calcined at different temperatures (700, 750, 800, 850 and 900 °C) and periods of time (1, 2, 3, 4 and 5 hr.). The effect of calcination temperature and calcination time on the structure and activity of the solid catalyst were examined by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Brunaure-Emmett-Teller (BET). The optimum catalyst performance was obtained at 900 °C
... Show MoreNitrogen dioxide NO2 is one of the most dangerous contaminant in the air, its toxic gas that cause disturbing respiratory effects, most of it emitted from industrial sources especially from the stack of power plants and oil refineries. In this study Gaussian equations modelled by Matlab program to state the effect of pollutant NO2 gas on area around Durra refinery, this program also evaluate some elements such as wind and stability and its effect on stacks height. Data used in this study is the amount of fuel oil and fuel gas burn inside refinery at a year 2017. Hourly April month data chosen as a case study because it’s unsteady month. After evaluate emission rate of the all fuel and calculate exit velocity from
... Show MoreIn this study, the potential of adsorption of amoxicillin antibiotic (AMOX) from aqueous solutions using prepared activated carbon (AC) was studied. The used AC was prepared from an inexpensive and available precursor (sunflower seed hulls (SSH)) and activated by potassium hydroxide (KOH). The prepared AC was examined for its ability to remove AMOX from aqueous contaminated solutions and characterized with the aid of N2 -adsorption/desorption isotherm Brunauer–Emmett– Teller, scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier-transform infrared. Zeta potential of the prepared activated carbon from sunflower seed hulls (SSHAC) were studied in relation to AMOX adsorption. The physical and chemical propert
... Show MoreIn the present study, the effectiveness of a procedure of electrocoagulation for removing chemical oxygen demand (COD) from the wastewater of petroleum refinery has been evaluated. Aluminum and stainless steel electrodes were used as a sacrificial anode and cathode respectively. The effect of current density (4-20mAcm−2), pH (3-11), and NaCl concentration (0-4g/l) on efficiency of removal of chemical oxygen demand was investigated. The results have shown that increasing of current density led to increase the efficiency of COD removal while increasing NaCl concentration resulted in decreasing of COD removal efficiency. Effect of pH was found to be lowering COD re