The compound 2,2'-(((1H-benzo(d)imidazol-2-yl)methyl)azanediyl)bis(ethan-1-ol) was reacted with benzyl bromide to afford compound (1) which used as row material to prepare a series of compounds through condensation reaction, the starting compound were reacted with tosyl chloride to protect the OH group to afford compound 2, then reacted benzyl bromide to produce compound (2), then the compound (2) treated with three compounds ( 2-mercaptobenzthiazole, 2-mercaptobenimidazol and 2-chloromethyl benzimidazole) to form compounds 3a,b, 4a,b and 5a,b respectively. In the another step the click reaction of compound 2,2'-(((1H-benzo(d)imidazol-2-yl)methyl)azanediyl)bis(ethan-1-ol) with Propargyl bromide produce compound 6 which reacted with sodium azide or benzyl azide to afford the compounds 7 and 8. The synthesized compounds were characterized and measured the physical properties via the FT-IR, HNMR, besides to the CHN analysis. These newly compounds were screened their antibacterial and antifungal activity. Compounds 1, 2a and 8 showed significant antibacterial activity as well these compounds exhibited either low or moderated antifungal activity.
Nanocrystalline copper sulphide (Cu2-xS) powders were synthesized by chemical precipitation from their aqueous solutions composed of different molar ratio of copper sulfate dehydrate (CuSO4.5H2O) and thiorea (NH2)2CS as source of Cu+2, S-2 ions respectively, and sodium ethylene diamine tetra acetic acid dehydrate (EDTA) as a complex agent. The compositions, morphological and structural properties of the nanopowders were characterized by energy dispersive spectroscopy (EDS), scanning electron microscope (SEM), and X-ray diffraction (XRD), respectively. The compositional results showed that the copper content was high and the Sulfur content was low for both CuS and Cu2S nanopowders. SEM images shows that all products consist of aggregate o
... Show MoreThe work include synthesis of nanocomposites (X / S / Ag) based on blend from Xanthan gum / sodium alginate polymers (X / S) with different loading of synthesized silver nanoparticales (0.01, 0.03 and 0.05 wt%) were added to the blend. The silver nanoparticles were prepared by reduction method and were characterized and analyzed using X-ray diffraction (XRD) and Atomic force microscope (AFM). XRD study showed the presence nanoparticle of silver with crystalline nature and face-centered cubic (FCC) structure and an average size of nanoparticles ranging from 32 to 37 nm. The surface study was performed using AFM which showed a fairly uniform shape to the nanocomposites and a spherical nature for the silver nanoparticles. The nanocomposite exh
... Show MoreActivated carbon loading with metals oxides is new adsorbents and catalyst, which seem very promising for desulfurization process. The present study deals with the preparation of three metals oxides loaded on activated carbon (AC). The tri composite of ZnO/NiO/CoO/AC was characterized by X-Ray Diffraction (XRD), X-Ray florescence (XRF), N2 adsorption for BET surface area, pore volume and Atomic Force Microscopy (AFM). The effect of calcination temperature is investigated. The best calcination temperature is 250oC based on the presence of phase, low weight loss and keep at high surface area. The surface area and pore volume of prepared tri composite are 932.97m2/g and 0.6031cm3/g respec
... Show MoreThis work illustrates an enhanced visible light photocatalytic degradation of methyl orange dye (M.O.) by employing BiOI / BiOCl composites prepared under room temperature and without any organic precursors. Various experimental parameters have been studied, namely; composition of the composite, irradiation time and cell material. Composition D which implied 75% BiOI and 25% BiOCl has shown the highest bleaching of M.O. dye. This confirms the optimum photo-sensitization phenomenon for this composition in comparison to others. In the optimum photo-sensitized composite the electron of the conduction band reveals better reducing power and the hole of the valence band exhibits more oxidative power than those of pure BiOI electron and hole. Acco
... Show MoreAtomic Force Microscope is an efficient tool to study the topography of precipitate. A study using Continuous Flow Injection via the use of Ayah 6SX1-T-2D Solar cell CFI Analyser . It was found that Cyproheptadine –HCl form precipitates of different quality using a precipitating agent's potassium hexacyanoferrate (III) and sodium nitroprusside. The formed precipitates are collected as they are formed in the usual sequence of forming the precipitate via the continuous flow .The precipitates are collected and dried under normal atmospheric pressure. The precipitates are subjected to atomic force microscope scanning to study the variation and differences of these precipitates relating them to the kind of response to both precipitates give
... Show MoreBackground: Mineral Trioxide Aggregate (MTA) and BiodentineTM cements are new materials with numerous exciting clinical applications. Both have appreciable properties which include good physical properties and the ability to stimulate tissue regeneration as well as good antibacterial effects. The aim of this study was to investigate and compare the antibacterial effects of MTA and BiodentineTM, when they were mixed with different concentrations of aqueous solutions of Black Seed extract, against Enterococcus faecalis. Materials and methods: MTA and BiodentineTMwere prepared according to the manufacturer’s instructions. The method of Mawlood was followed to prepare the Black Seed aqueous solution. Agar diffusion method on Brain Heart
... Show MoreThis study develops a systematic density functional theory alongside on-site Coulomb interaction correction (DFT + U) and ab initio atomistic thermodynamics approachs for ternary (or mixed transitional metal oxides), expressed in three reservoirs. As a case study, among notable multiple metal oxides, synthesized CoCu2O3 exhibits favourable properties towards applications in solar, thermal and catalytic processes. This progressive contribution applies DFT + U and atomistic thermodynamic approaches to examine the structure and relative stability of CoCu2O3 surfaces. Twenty-five surfaces along the [001], [010], [100], [011], [101], [110] and [111] low-Miller-indices, with varying surface-termination configurations were selected in this study.
... Show More