Significant advancements in nanoscale material efficiency optimization have made it feasible to substantially adjust the thermoelectric transport characteristics of materials. Motivated by the prediction and enhanced understanding of the behavior of two-dimensional (2D) bilayers (BL) of zirconium diselenide (ZrSe2), hafnium diselenide (HfSe2), molybdenum diselenide (MoSe2), and tungsten diselenide (WSe2), we investigated the thermoelectric transport properties using information generated from experimental measurements to provide inputs to work with the functions of these materials and to determine the critical factor in the trade-off between thermoelectric materials. Based on the Boltzmann transport equation (BTE) and Barden-Shockley deformation potential (DP) theory, we carried out a series of investigative calculations related to the thermoelectric properties and characterization of these materials. The calculated dimensionless figure of merit (ZT) values of 2DBL-MSe2 (M = Zr, Hf, Mo, W) at room temperature were 3.007, 3.611, 1.287, and 1.353, respectively, with convenient electronic densities. In addition, the power factor is not critical in the trade-off between thermoelectric materials but it can indicate a good thermoelectric performance. Thus, the overall thermal conductivity and power factor must be considered to determine the preference of thermoelectric materials.
A New developed technique to estimate the necessary six elastic constants of homogeneous laminate of special orthotropic properties are presented in this paper for the first time. The new approach utilizes the elasto-static deflection behavior of composite cantilever beam employing the famous theory of Timoshenko. Three extracted strips of the composite plate are tested for measuring the bending deflection at two locations. Each strip is associated to a preferred principal axis and the deflection is measured in two orthogonal planes of the beam domain. A total of five trails of testing is accomplished and the numerical results of the stiffness coefficients are evaluated correctly under the contribution of the macromechanic
... Show MoreMechanical Engineering Department/ University of Technology- Baghdad.
Confinement layer is considered as the most important parameter during the laser shock peening (LSP) treatment. In this paper, its effect on the surface treatment effectivity of composite materials was investigated. The composite used in this research was fabricated using hand lay-up as a manufacturing process. The matrix material was built from unsaturated polyester resin and reinforced with 2.5% volume fraction of micro particles of aluminum powder. Fatigue test was conducted at room temperature with constant amplitude stress and a stress ratio of R =-1, before and after LSP treatment. LSP was applied with and without confinement layer at the same level
... Show MoreIn the present work, Uranium (238U), Thorium (232Th) and Potassium (40K) specific activity concentration in (Bq/kg) was measured in five different types for wheat flours that are available in the Iraqi markets. The gamma spectrometry method with an NaI (Tl) detector has been used for radiometric measurements. Calculations of radium equivalent activity, annual effective dose equivalent, external hazard index (Hex), internal hazard index (Hin), representing gamma index and gamma dose rate in all flour samples were 17.98132 Bq/kg, 0.0100334, 0.04502, 0.04857, 0.06872, 0.125883 and 8.181244 respectively. It is found that the average of specific activity concentration of wheat flour sam
... Show MoreCopper and Zinc powders with different particle sizes were subjected to sieving of range (20-100?m) and He-Ne laser system to determine the particle size . 1wt% from each powders was blended carefully with 99wt% from Iraqi oil . Microscopic examination were carried for all samples to reveal the particle size distribution . XRF intensity measurements were conducted for all suspended samples , and the relation between XRF intensity and the particle size was found .
The prostheses sockets use normally composite materials which means that their applications may be related with the human body. Therefore, it was very necessary to improve the mechanical properties of these materials. The prosthetic sockets are subjected to varying stresses in gait cycle scenario which may cause a fatigue damage. Therefore, it is necessary or this work to modify the fatigue behavior of the materials used for manufacturing the prostheses sockets. In this work, different Nano particle materials are used to modify the mechanical properties of the composite materials, and increase the fatigue strength. By using an experimental technique, the effect of using different volu
Al-Si alloys which are widely used in engineering applications due to their outstanding properties can be modified for more enhancements in their properties. Current work investigated the ability of these alloys to be modified by casting them through the addition of nanoparticles. So, Multi-wall carbon nanotubes (CNT) and titanium carbide ceramic particles (TIC) with size of (20 nm) were added with different amounts started from (0.5 up to 3%) weight to cast alloy A356 that was considered to be the base metal matrix, then stirred with different speeds of (270, 800, 1500, 2150) rpm at 520 °C for one minute. The results showed change in microstructure’ shape of the casted alloys from the dendritic to spherical gra
... Show MoreAn experimental study was conducted with low cost natural waste adsorbent materials, barley husks and eggshells, for the removal of Levofloxacine (LEVX) antibacterial from synthetic waste water. Batch sorption tests were conducted to study their isothermal adsorption capacity and compared with conventional activated carbon which were, activated carbon > barley husks > eggshells with removal efficiencies 74, 71 and 42 % with adsorbents doses of 5, 5 and 50 g/L of activated carbon, barley husks, and eggshells respectively. The equilibrium sorption isotherms had been analyzed by Langmuir, Freundlich, and Sips models, and their parameters were evaluated. The experimental data were correlated well with the Langmuir model which gives the
... Show MoreIn this study, Laser Shock Peening (LSP) effect on the polymeric composite materials has been investigated experimentally. Polymeric composite materials are widely used because they are easy to fabricate and have many attractive features. Unsaturated polyester resin as a matrix was selected and Aluminum powder with micro particles as a reinforcement material was used with different volume fraction (2.5%, 5% and 7.5%). Hand lay-up process was used for preparation the composites. Fatigue test with constant amplitude with stress ratio (R =-1) was carried out before and after LSP process with two levels of energy (1Joule and 2Joule). The result showed an increase in the endurance strength of 25.448% at 7.5% volume fraction when peened is 1J
... Show MoreBackground: The microhardness of a composite resin is a vital parameter that is used to determine its clinical behavior. Measuring the microhardness of a composite resin has been used as an indirect method to assess its degree of conversion and extent of polymerization. The purpose of this in vitro study was to evaluate the effect of three curing distances (0, 2, and 4 mm) on the microhardness of the top and bottom surfaces of three types of flowable bulk-fill composite resins (smart dentin replacement, Opus bulk fill flow, and Tetric N). Material and method: Sixty-three specimens from the three types of composite resins (n=21) were fabricated using Teflon mold with a 4mm depth and a 5 mm internal diameter and cured for 20 seconds. For e
... Show MoreThe purpose of this study was to measure serum levels of insulin-like growth factor-binding protein (IGFBP7), Insulin-like Growth Factor 1 (IGF-1), Growth Hormone (GH), Interleukin 6 (IL-6) and insulin in acromegaly patients and healthy controls. The acromegaly group had 60 patients, while the population group had 30 people who had never had acromegaly before. The concentration of IGFBP7, IGF-1, GH, IL-6, and insulin were determined. The results of the present study indicate that IGFBP7 level in the acromegaly group was significantly lower (1.690.07 ng/mL vs. 2.740.12 ng/mL, respectively, p = 0.001). IGF-1, GH, IL-6, and insulin concentrations were also significantly higher in acromegaly patients. The diagnostic accuracy (2.194) was exce
... Show More