This deals with estimation of Reliability function and one shape parameter (?) of two- parameters Burr – XII , when ?(shape parameter is known) (?=0.5,1,1.5) and also the initial values of (?=1), while different sample shze n= 10, 20, 30, 50) bare used. The results depend on empirical study through simulation experiments are applied to compare the four methods of estimation, as well as computing the reliability function . The results of Mean square error indicates that Jacknif estimator is better than other three estimators , for all sample size and parameter values
The goal beyond this Research is to review methods that used to estimate Logistic distribution parameters. An exact estimators method which is the Moment method, compared with other approximate estimators obtained essentially from White approach such as: OLS, Ridge, and Adjusted Ridge as a suggested one to be applied with this distribution. The Results of all those methods are based on Simulation experiment, with different models and variety of sample sizes. The comparison had been made with respect to two criteria: Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE).
The estimation of the stressÙ€ strength reliability of Invers Kumaraswamy distribution will be introduced in this paper based on the maximum likelihood, moment and shrinkage methods. The mean squared error has been used to compare among proposed estimators. Also a Monte Carlo simulation study is conducted to investigate the performance of the proposed methods in this paper.
Because of the experience of the mixture problem of high correlation and the existence of linear MultiCollinearity between the explanatory variables, because of the constraint of the unit and the interactions between them in the model, which increases the existence of links between the explanatory variables and this is illustrated by the variance inflation vector (VIF), L-Pseudo component to reduce the bond between the components of the mixture.
To estimate the parameters of the mixture model, we used in our research the use of methods that increase bias and reduce variance, such as the Ridge Regression Method and the Least Absolute Shrinkage and Selection Operator (LASSO) method a
... Show MoreThe Weibull distribution is considered one of the Type-I Generalized Extreme Value (GEV) distribution, and it plays a crucial role in modeling extreme events in various fields, such as hydrology, finance, and environmental sciences. Bayesian methods play a strong, decisive role in estimating the parameters of the GEV distribution due to their ability to incorporate prior knowledge and handle small sample sizes effectively. In this research, we compare several shrinkage Bayesian estimation methods based on the squared error and the linear exponential loss functions. They were adopted and compared by the Monte Carlo simulation method. The performance of these methods is assessed based on their accuracy and computational efficiency in estimati
... Show MoreIn this paper, suggested formula as well a conventional method for estimating the twoparameters (shape and scale) of the Generalized Rayleigh Distribution was proposed. For different sample sizes (small, medium, and large) and assumed several contrasts for the two parameters a percentile estimator was been used. Mean Square Error was implemented as an indicator of performance and comparisons of the performance have been carried out through data analysis and computer simulation between the suggested formulas versus the studied formula according to the applied indicator. It was observed from the results that the suggested method which was performed for the first time (as far as we know), had highly advantage than t
... Show MoreThis paper shews how to estimate the parameter of generalized exponential Rayleigh (GER) distribution by three estimation methods. The first one is maximum likelihood estimator method the second one is moment employing estimation method (MEM), the third one is rank set sampling estimator method (RSSEM)The simulation technique is used for all these estimation methods to find the parameters for generalized exponential Rayleigh distribution. Finally using the mean squares error criterion to compare between these estimation methods to find which of these methods are best to the others
Abstract
In this study, we compare between the autoregressive approximations (Yule-Walker equations, Least Squares , Least Squares ( forward- backword ) and Burg’s (Geometric and Harmonic ) methods, to determine the optimal approximation to the time series generated from the first - order moving Average non-invertible process, and fractionally - integrated noise process, with several values for d (d=0.15,0.25,0.35,0.45) for different sample sizes (small,median,large)for two processes . We depend on figure of merit function which proposed by author Shibata in 1980, to determine the theoretical optimal order according to min
... Show MoreExponential distribution is one of most common distributions in studies and scientific researches with wide application in the fields of reliability, engineering and in analyzing survival function therefore the researcher has carried on extended studies in the characteristics of this distribution.
In this research, estimation of survival function for truncated exponential distribution in the maximum likelihood methods and Bayes first and second method, least square method and Jackknife dependent in the first place on the maximum likelihood method, then on Bayes first method then comparing then using simulation, thus to accomplish this task, different size samples have been adopted by the searcher us
... Show MoreThis study discussed a biased estimator of the Negative Binomial Regression model known as (Liu Estimator), This estimate was used to reduce variance and overcome the problem Multicollinearity between explanatory variables, Some estimates were used such as Ridge Regression and Maximum Likelihood Estimators, This research aims at the theoretical comparisons between the new estimator (Liu Estimator) and the estimators