This paper is based on the Sentinel-2 satellite data: the thermal, red, and NIR bands. The Babylon city was chosen in this study for different reasons: its location in the middle of Iraq and it represents the largest capitals of the Mesopotamia civilization in the word. The Land Surface Temperature (LST) was determined using a method that incorporates remote sensing, geographic information systems, and statistics. This process has made it possible to monitor the relationship between land usage and the land surface temperature for four seasons in the year 2021. The mapswere processed and analyzed by using ArcGIS software. Five maps of the LST were constructed. Each map represents diffe
Two quantitative, environment-friendly and easily monitored assays for Ni (II) and Co (III) ions analysis in different lipstick samples collected from 500-Iraqi dinars stores located in Baghdad were introduced. The study was based on the reaction of nickel (II) ions with dimethylglyoxime (DMG) reagent and the reaction of cobalt (III) ions with 1-nitroso-2-naphthol (NN) reagent to produce colored products. The color change was measured by spectrophotometric method at 565 nm and 430 nm for Ni and Co, respectively, with linear calibration graphs in the concentration range 0.25-100 mg L-1 (Ni) and 0.5-100 mg L-1 (Co) and LOD and LOQ of 0.11 mg L-1 and 0.36 mg L-1 (Ni), and 0.15 mg L-1 an
... Show MoreThe research aims to derive the efficient industrial plans for Al – shaheed public company under risk by using Target MOTAD as a linear alternative model for the quadratic programming models.
The results showed that there had been a sort of (trade- off) between risk and the expected gross margins. And if the studied company strives to get high gross margin, it should tolerate risk and vice versa. So the management of Al- Shaheed Company to be invited to apply the suitable procedures in the production process, in order to get efficient plans that improves it's performance .
In this research the Empirical Bayes method is used to Estimate the affiliation parameter in the clinical trials and then we compare this with the Moment Estimates for this parameter using Monte Carlo stimulation , we assumed that the distribution of the observation is binomial distribution while the distribution with the unknown random parameters is beta distribution ,finally we conclude that the Empirical bayes method for the random affiliation parameter is efficient using Mean Squares Error (MSE) and for different Sample size .
In this paper, a procedure to establish the different performance measures in terms of crisp value is proposed for two classes of arrivals and multiple channel queueing models, where both arrival and service rate are fuzzy numbers. The main idea is to convert the arrival rates and service rates under fuzzy queues into crisp queues by using graded mean integration approach, which can be represented as median rule number. Hence, we apply the crisp values obtained to establish the performance measure of conventional multiple queueing models. This procedure has shown its effectiveness when incorporated with many types of membership functions in solving queuing problems. Two numerical illustrations are presented to determine the validity of the
... Show MoreElectro-kinetic remediation technology is one of the developing technologies that offer great promise for the cleanup of soils contaminated with heavy metals. A numerical model was formulated to simulate copper (Cu) transport under an electric field using one-dimensional diffusion-advection equations describing the contaminant transport driven by chemical and electrical gradients in soil during the electro-kinetic remediation as a function of time and space. This model included complex physicochemical factors affecting the transport phenomena, such as soil pH value, aqueous phase reaction, adsorption, and precipitation. One-dimensional finitedifference computer program successfully predicted meaningful values for soil pH profiles and Cu
... Show MoreFeature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show More