Durability of hot mix asphalt (HMA) against moisture damage is mostly related to asphalt-aggregate adhesion. The objective of this work is to find the effect of nanoclay with montmorillonite (MMT) on Marshall properties and moisture susceptibility of asphalt mixture. Two types of asphalt cement, AC(40-50) and AC(60-70) were modified with 2%, 4% and 6% of Iraqi nanoclay with montmorillonite. The Marshall properties, Tensile strength ratio(TSR) and Index of retained strength(ISR) were determined in this work. The total number of specimens was 216 and the optimum asphalt content was 4.91% and 5% for asphalt cement (40-50) and (60-70) respectively. The results showed that the modification of asphalt cement with MMT led to increase Marshall stability and the addition of 6% of MMT recorded the highest increase, where it increased by 26.35% and 22.26% foe asphalt cement(40-5) and(60-70) respectively. Also, the addition of MMT led to increase moisture resistance of asphalt mixture according to the increase in TSR and IRS. The addition of 4% and 6% of MMT recorded the highest increase in TSR and IRS for asphalt cement (40-50) and (60-70) respectively, where they increased by 11.8% and 17.5% respectively for asphalt cement (40-50) and by 10% and 18% respectively for asphalt cement (60-70).
Reliability analysis methods are used to evaluate the safety of reinforced concrete structures by evaluating the limit state function 𝑔(𝑋𝑖). For implicit limit state function and nonlinear analysis , an advanced reliability analysis methods are needed. Monte Carlo simulation (MCS) can be used in this case however, as the number of input variables increases, the time required for MCS also increases, making it a time consuming method especially for complex problems with implicit performance functions. In such cases, MCS-based FORM (First Order Reliability Method) and Artificial Neural Network-based FORM (ANN FORM) have been proposed as alternatives. However, it is important to note that both MCS-FORM and ANN-FORM can also be time-con
... Show MoreThis paper studied the behaviour of reinforced reactive powder concrete (RPC) two-way slabs under static load. The experimental program included testing three simply supported slabs of 1000 mm length, 1000 mm width, and 70 mm thickness. Tested specimens were of identical properties except their steel fibers volume ratio (0.5 %, 1 %, and 1.5 %). Static test results revealed that, increasing steel fibers volume ratio from 0.5% to 1% and from 1% to 1.5%, led to an increase in: first crack load by (32.2 % and 52.3 %), ultimate load by (36.1 % and 17.0 %), ultimate deflection by (33.6 % and 3.4 %), absorbed energy by (128 % and 20.2 %), and the ultimate strain by (1.1 % and 6.73 %). The stiffness and ductility of the specimens also increased. A
... Show MoreThis paper presents ABAQUS simulations of fully encased composite columns, aiming to examine the behavior of a composite column system under different load conditions, namely concentric, eccentric with 25 mm eccentricity, and flexural loading. The numerical results are validated with the experimental results obtained for columns subjected to static loads. A new loading condition with a 50 mm eccentricity is simulated to obtain additional data points for constructing the interaction diagram of load-moment curves, in an attempt to investigate the load-moment behavior for a reference column with a steel I-section and a column with a GFRP I-section. The result comparison shows that the experimental data align closely with the simulation
... Show MoreThis study aimed at evaluating the torsional capacity of reinforced concrete (RC) beams externally wrapped with fiber reinforced polymer (FRP) materials. An analytical model was described and used as a new computational procedure based on the softened truss model (STM) to predict the torsional behavior of RC beams strengthened with FRP. The proposed analytical model was validated with the existing experimental data for rectangular sections strengthened with FRP materials and considering torque-twist relationship and crack pattern at failure. The confined concrete behavior, in the case of FRP wrapping, was considered in the constitutive laws of concrete in the model. Then, an efficient algorithm was developed in MATLAB environment t
... Show MoreTo achieve sustainability, use waste materials to make concrete to use alternative components and reduce the production of Portland cement. Lime cement was used instead of Portland cement, and 15% of the cement's weight was replaced with silica fume. Also used were eco-friendly fibers (copper fiber) made from recycled electrical. This work examines the impact of utilizing sustainable copper fiber with different aspect ratios (l/d) on some mechanical properties of high-strength green concrete. A high-strength cement mixture with a compressive strength of 65 MPa in line with ACI 211.4R was required to complete the assignment. Copper fibers of 1% by volume of concrete were employed in mixes with four different aspect ratios
... Show MoreThe study was conducted at the fields of the Dept. of Horticulture and Garden Engineering, College of the Agricultural Engineering Sciences, Jadriyah in the fall season of 2020-2021 aiming to culture the coral lettuce with green and red leaves under the hydroponics system using the modified nutrient solution film NFT and study the effect of aqueous extracts of alfalfa and berseem sprouted seeds on the quantitative and qualitative yield of the lettuce crop. The research was conducted as an experiment of split plots within the Randomized Complete Block Design (RCBD) of three replicates. The seedlings of the green coral lettuce, Locarno RZ, and red coral lettuce, Locarno RZ, symbolized by A and B respectively, were transferred to the c
... Show MoreGlassy carbon electrode (GCE) was modified with carbon nanotubes CNT and C60 by attachment and solution evaporation techniques, respectively. CNT/Li+/GCE and C60/Li+/GCE were prepared by modifying CNT/GCE and C60/GCE in Li+ solution via cyclic voltammetry (CV) potential cycling. The sensing characteristics of the modified film electrodes, demonstrated in this study for interference of Mn2+ in different heavy metals ion esp. Hg2+, Cd2+ and Cu2+. The interfering effect was investigated that exert positive interference on the redox peaks of Mn2+. The modification of GCE with nano materials and Li+ act an enhancement for the redox current peaks to observe the effect of interference for Mn2+ in 1:1 ratio with different heavy metals ion.
A novel demountable shear connector for precast steel‐concrete composite bridges is presented. The connector uses high‐strength steel bolts, which are fastened to the top flange of the steel beam with the aid of a special locking nut configuration that prevents slip of bolts within their holes. Moreover, the connector promotes accelerated construction and overcomes typical construction tolerances issues of precast structures. Most importantly, the connector allows bridge disassembly, and therefore, can address different bridge deterioration scenarios with minimum disturbance to traffic flow, i.e. (i) precast deck panels can be rapidly uplifted and replaced; (ii) connectors can be rapidly removed and replaced; and (iii) steel beams can b
... Show MoreThis study was carried out at University of Baghdad - College of Agricultural Engineering Sciences - Research Station B during the autumn season 2019-2020, in order to evaluate the effect of Ozone and the foliar application of coconut water and moringa extract on the growth of broccoli plant grown in modified NFT film technology. A factorial experiment (2*5) was carried out within Nested Design with three replicates. The ozone treatment was distributed into the main plots which consisted of oxygen (O2) and ozone (O3). The foliar application of organic nutrients were distributed randomly within each replicate including five treatments, which were the control treatment (T0), Coconut water with two concentrations of 50 (T1) and 100 ml.
... Show More