This study investigates the influence of five nanomaterials nano-alumina (NA), nano-silica (NS), nano-titanium (NT), nano-zinc oxide (NZ), and carbon nanotubes (CNT)on enhancing the fatigue resistance of asphalt binders. NA, NS, and NT were incorporated at dosages of 2%, 4%, 6%, 8%, and 10%, while NZ and CNT were added at 1%, 2%, 3%, 4%, and 5%. A series of physical, rheological, and performance-based tests were conducted, including penetration, softening point, ductility, and rotational viscosity. Based on the outcomes of the overall desirability evaluation, the first three dosages of each nanomaterial were selected for further testing due to their superior workability and binder flexibility. Subsequent investigations included the high-temperature performance grade, fatigue parameter (G*.sin δ), Linear Amplitude Sweep (LAS), and IDEAL-CT test integrated with Digital Image Correlation (DIC). The results confirmed that nanomaterial modification significantly enhanced asphalt binder performance, though the effectiveness varied with type and dosage. Physical tests demonstrated improved stiffness, softening point, and reduced temperature susceptibility, with slight ductility losses at higher dosages. Rotational viscosity analysis indicated that low-to-moderate contents ensured workability excluding high CNT dosages which exceeded Superpave limits. High-temperature PG improved notably with NS, NZ, and CNT, while NA and NT showed limited gains. Fatigue parameter results (G*.sin δ) identified NA and NT as the most consistent in reducing cracking susceptibility. LAS testing confirmed superior fatigue lives at optimal dosages of 6% NA, 6% NT, 2% NS, 2% CNT, and 1% NZ, while higher concentrations often caused agglomeration and performance decline. IDEAL-CT and DIC analyses validated these findings by demonstrating increased fracture energy, CT index, and more uniform strain distributions in nano-modified mixtures compared to neat asphalt. FTIR spectra confirmed reduced oxidative aging most prominently with NT and NA while SEM revealed enhanced microstructural cohesion and reduced surface defects. The integration of the Overall Desirability (OD) framework confirmed NT-6 as the most effective dosage, followed by NZ-1 and NS-2, while higher dosages often led to poor compatibility and performance decline. Complementary cost–effectiveness analysis further demonstrated that lower dosages of NZ, NT, and NS achieved the best balance between technical performance and economic viability, whereas excessive CNT and NT contents were not recommended due to unfavorable cost-to-performance ratios. These findings highlight that dosage optimization is critical for translating nanomaterial benefits into practical pavement engineering applications, ensuring enhanced durability with rational investment of resources.
Many studies have been published to address the growing issues in wireless communication systems. Space-Time Block Coding (STBC) is an effective and practical MIMO-OFDM application that can address such issues. It is a powerful tool for increasing wireless performance by coding data symbols and transmitting diversity using several antennas. The most significant challenge is to recover the transmitted signal through a time-varying multipath fading channel and obtain a precise channel estimation to recover the transmitted information symbols. This work considers different pilot patterns for channel estimation and equalization in MIMO-OFDM systems. The pilot patterns fall under two general types: comb and block types, with
... Show MoreGlobal Navigation Satellite System (GNSS) is considered to be one of the most crucial tools for different applications, i.e. transportation, geographic information systems, mobile satellite communications, and others. Without a doubt, the GNSS has been widely employed for different scientific applications, such as land surveying, mapping, and precise monitoring for huge structures, etc. Thus, an intense competitive has appeared between companies which produce geodetic GNSS hardware devices to meet all the requirements of GNSS communities. This study aims to assess the performance of different GNSS receivers to provide reliable positions. In this study, three different receivers, which are produced by different manufacturers, were fi
... Show MoreIn recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show MoreAbstract
The current research aims to know the reality of the research's coefficients, to know correlation and effectiveness between the organizational Agility and high performance . The current research has been applied on the official banks , including a sample of senior administration members (120) ; besides , the research has used questionnaire that being considered as the main tool for gathering information and data . It includes 59 questions in addition to the personal interviews program as to support the questionnaire and to fulfill a great deal of reality. It has been anal
... Show MoreBackground: Health information systems in most countries are inadequate in providing the needed management support and the current health information systems are therefore widely seen as management obstacles rather than as tools,Objectives: the current study is an attempt to assess the behavioral and organizational determinants of health information system performance in Iraq.Methods: A cross-sectional study was conducted by interviewed a total of 189 respondents selected from six Iraqi governorates. The Organizational and Behavioral Assessment Tool was used to measure the behavioral and organizational determinants of health information system performance, it is one of the PRISM package tools that are used to assess the health informatio
... Show MoreThe sensors based on Nickel oxide doped chromic oxide (NiO: Cr2O3) nanoparticals were fabricated using thick-film screen printing of sol-gel grown powders. The structural, morphological investigations were carried out using XRD, AFM, and FESEM. Furthermore, the gas responsivity were evaluated towards the NH3 and NO2 gas. The NiO0.10: Cr2O3 nanoparticles exhibited excellent response of 95 % at 100oC and better selectivity towards NH3 with low response and recovery time as compared to pure Cr2O3 and can stand as reliable sensor element for NH3 sensor related applications.
Solar energy is one of the immeasurable renewable energy in power generation for a green, clean and healthier environment. The silicon-layer solar panels absorb sun energy and converts it into electricity by off-grid inverter. Electricity is transferred either from this inverter or from transformer, consumed by consumption unit(s) available for residential or economic purposes. The artificial neural network is the foundation of artificial intelligence and solves many complex problems which are difficult by statistical methods or by humans. In view of this, the purpose of this work is to assess the performance of the Solar - Transformer - Consumption (STC) system. The system may be in complete breakdown situation due to failure of both so
... Show MoreIn the current endeavor, a new Schiff base of 14,15,34,35-tetrahydro-11H,31H-4,8-diaza-1,3(3,4)-ditriazola-2,6(1,4)-dibenzenacyclooctaphane-4,7-dien-15,35-dithione was synthesized. The new symmetrical Schiff base (Q) was employed as a ligand to produce new complexes comprising Co(II), Ni(II), Cu(II), Pd(II), and Pt(II) metal-ions at a ratio of 2:1 (Metal:ligand). There have been new ligands and their complexes validated by (FTIR), (UV-visible), 1H-NMR, 13C-NMR, CHNS, and FAA spectroscopy, Thermogravimetric analysis (TG), Molar conductivity, and Magnetic susceptibility. The photostabilization technique to enhance the polymer was also used. The ligand Q and its complexes were mixed in 0.5% w/w of polyvinyl chloride in tetrahydrofuran
... Show More