This study investigates the influence of five nanomaterials nano-alumina (NA), nano-silica (NS), nano-titanium (NT), nano-zinc oxide (NZ), and carbon nanotubes (CNT)on enhancing the fatigue resistance of asphalt binders. NA, NS, and NT were incorporated at dosages of 2%, 4%, 6%, 8%, and 10%, while NZ and CNT were added at 1%, 2%, 3%, 4%, and 5%. A series of physical, rheological, and performance-based tests were conducted, including penetration, softening point, ductility, and rotational viscosity. Based on the outcomes of the overall desirability evaluation, the first three dosages of each nanomaterial were selected for further testing due to their superior workability and binder flexibility. Subsequent investigations included the high-temperature performance grade, fatigue parameter (G*.sin δ), Linear Amplitude Sweep (LAS), and IDEAL-CT test integrated with Digital Image Correlation (DIC). The results confirmed that nanomaterial modification significantly enhanced asphalt binder performance, though the effectiveness varied with type and dosage. Physical tests demonstrated improved stiffness, softening point, and reduced temperature susceptibility, with slight ductility losses at higher dosages. Rotational viscosity analysis indicated that low-to-moderate contents ensured workability excluding high CNT dosages which exceeded Superpave limits. High-temperature PG improved notably with NS, NZ, and CNT, while NA and NT showed limited gains. Fatigue parameter results (G*.sin δ) identified NA and NT as the most consistent in reducing cracking susceptibility. LAS testing confirmed superior fatigue lives at optimal dosages of 6% NA, 6% NT, 2% NS, 2% CNT, and 1% NZ, while higher concentrations often caused agglomeration and performance decline. IDEAL-CT and DIC analyses validated these findings by demonstrating increased fracture energy, CT index, and more uniform strain distributions in nano-modified mixtures compared to neat asphalt. FTIR spectra confirmed reduced oxidative aging most prominently with NT and NA while SEM revealed enhanced microstructural cohesion and reduced surface defects. The integration of the Overall Desirability (OD) framework confirmed NT-6 as the most effective dosage, followed by NZ-1 and NS-2, while higher dosages often led to poor compatibility and performance decline. Complementary cost–effectiveness analysis further demonstrated that lower dosages of NZ, NT, and NS achieved the best balance between technical performance and economic viability, whereas excessive CNT and NT contents were not recommended due to unfavorable cost-to-performance ratios. These findings highlight that dosage optimization is critical for translating nanomaterial benefits into practical pavement engineering applications, ensuring enhanced durability with rational investment of resources.
This paper presents a modified training method for Recurrent Neural Networks. This method depends on the Non linear Auto Regressive (NARX) model with Modified Wavelet Function as activation function (MSLOG) in the hidden layer. The modified model is known as Modified Recurrent Neural (MRN). It is used for identification Forward dynamics of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot. This model is also used in the design of Direct Inverse Control (DIC). This method is compared with Recurrent Neural Networks that used Sigmoid activation function (RS) in the hidden layer and Recurrent Neural Networks with Wavelet activation function (RW). Simulation results shows that the MRN model is bett
... Show MoreGypseous soil, which covers vast area in west, middle, east and south west regions of Iraq exhibit acceptable strength properties when dry, but it is weak and collapsible when it comes in touch with moisture from rain or other sources. When such weak soil is adopted for earth reinforced embankment construction, it may exhibit hazardous situation. Gypseous soil was investigated for the optimum liquid asphalt requirements of both cutback and emulsion using the one-dimensional unconfined compression strength test. The optimum fluid content was 13% (7% of cutback with 6% water content), and 17% (9% of emulsion with 8% water content). A laboratory model box of 50x50x25 cm was used as a representative of embankment; soil or asphalt stabilize
... Show MoreSome azo compounds were prepared by coupling the diazonium salts of amines with 2,4-dimethylphenol The structure of azo compounds were determined on the basis of elemental analyses, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Complexes of nickel(II) and copper(II) have been synthesized and characterized. The composition of complexes has been established by using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectroscopic methods as well as conductivity magnetic susceptibility measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). High molar absorbtivity of the complex solutions were observ
... Show MoreIn the present study, an attempt has been made to experimentally investigate the flexural performance of ten simply supported reinforced concrete gable roof beams, including solid control specimen (i.e., without openings) and nine beams with web openings of different dimensions and configurations. The nine beams with openings have identical reinforcement details. All beams were monotonically loaded to failure under mid-span loading. The main variables were the number of the created openings, the total area of the created openings, and the inclination angle of the posts between openings. Of interest is the load-carrying capacity, cracking resistance and propagation, deformability, failure mode, and strain development that represent the behav
... Show MoreThe research problem is represented in the weakness of reliance on the role of some motor abilities (flexibility, balance and compatibility) in biomechanical indicators and the performance of a large number of gymnastics skills, including the skill of the human wheel, in addition to the lack of reliance on the use of video imaging of the skill in order to analyze its path and identify its weaknesses. The research aimed to identify the relationship between motor abilities, biomechanical indicators and the degree of performance of the skill of the human wheel, and the descriptive method was used on its own, chosen in an intentional method, consisting of (10) students from the third stage in the Department of Physical Education and Sp
... Show More