In this paper, the class of meromorphic multivalent functions of the form by using fractional differ-integral operators is introduced. We get Coefficients estimates, radii of convexity and star likeness. Also closure theorems and distortion theorem for the class , is calculaed.
In the present paper, the authors introduce and investigates two new subclasses and, of the class k-fold bi-univalent functions in the open unit disk. The initial coefficients for all of the functions that belong to them were determined, as well as the coefficients for functions that belong to a field determining these coefficients requires a complicated process. The bounds for the initial coefficients and are contained among the remaining results in our analysis are obtained. In addition, some specific special improver results for the related classes are provided.
An α-fractional integral and derivative of real function have been introduced in new definitions and then, they compared with the existing definitions. According to the properties of these definitions, the formulas demonstrate that they are most significant and suitable in fractional integrals and derivatives. The definitions of α-fractional derivative and integral coincide with the existing definitions for the polynomials for 0 ≤ α < 1. Furthermore, if α = 1, the proposed definitions and the usual definition of integer derivative and integral are identical. Some of the properties of the new definitions are discussed and proved, as well, we have introduced some applications in the α- fractional derivatives and integral
... Show MoreSome relations of inclusion and their properties are investigated for functions of type " -valent that involves the generalized operator of Srivastava-Attiya by using the principle of strong differential subordination.
Recently, numerous the generalizations of Hurwitz-Lerch zeta functions are investigated and introduced. In this paper, by using the extended generalized Hurwitz-Lerch zeta function, a new Salagean’s differential operator is studied. Based on this new operator, a new geometric class and yielded coefficient bounds, growth and distortion result, radii of convexity, star-likeness, close-to-convexity, as well as extreme points are discussed.
In this paper, subclasses of the function class ∑ of analytic and bi-univalent functions associated with operator L_q^(k, λ) are introduced and defined in the open unit disk △ by applying quasi-subordination. We obtain some results about the corresponding bound estimations of the coefficients a_(2 ) and a_(3 ).
In this paper, a new class of harmonic univalent functions was defined by the differential operator. We obtained some geometric properties, such as the coefficient estimates, convex combination, extreme points, and convolution (Hadamard product), which are required
This book includes four main chapters: 1. Indefinite Integral. 2. Methods of Integration. 3. Definite Integral. 4. Multiple Integral. In addition to many examples and exercises for the purpose of acquiring the student's ability to think correctly in solving mathematical questions.
This book includes three main chapters: 1. Functions & Their Derivatives. 2. Minimum, Maximum and Inflection points. 3. Partial Derivative. In addition to many examples and exercises for the purpose of acquiring the student's ability to think correctly in solving mathematical questions.
The aim of this paper is to prove a theorem on the Riesz means of expansions with respect to Riesz bases, which extends the previous results of [1] and [2] on the Schrödinger operator and the ordinary differential operator of 4-th order to the operator of order 2m by using the eigen functions of the ordinary differential operator. Some Symbols that used in the paper: the uniform norm. <,> the inner product in L2. G the set of all boundary elements of G. ˆ u the dual function of u.
Background: Dental calculus is mineralized dental plaque formed on teeth and dental prosthesis surfaces in the oral cavity. Urinary stone is a crystal aggregation formed in urinary system due to minerals saturation present in urine. The structure of dental calculus is similar to that of urinary stone. Objective: To assess oral hygiene and gingival status in patients with urinary stone. And compared with healthy subjects. Patients and Methods: Sixty participants, 25-40 years, were involved in this study who were divided into study and control group. The study group involved patients with urinary stone while the control group involved healthy subjects. Clinical parameters including plaque, calculus and gingival indices were recorded for al
... Show More