In this paper, the class of meromorphic multivalent functions of the form by using fractional differ-integral operators is introduced. We get Coefficients estimates, radii of convexity and star likeness. Also closure theorems and distortion theorem for the class , is calculaed.
In this paper we offer two new subclasses of an open unit disk of r-fold symmetric bi-univalent functions. The Taylor-Maclaurin coefficients have their coefficient bounds calculated. Furthermore, for functions in , we have solved Fekete- functional issues. For the applicable classes, there are also a few particular special motivator results.
This study was performed at Nuclear Radiation Hospital in Baghdad for the period from
January 2011 to May 2011. 44 Blood samples were collected from patients suffered lung and
bladder cancer and 24 samples as healthy control individuals.
Routine liver functions tests were studied by measuring S.GPT, S.GOT and Kidney
function was evaluated by estimation of blood urea and creatinine in serum samples of
individuals studied.
It was observed that the incidence of lung and bladder cancer was higher in males than
females patients ( male 81.82 %, 72.73%, female18 .18%, 27.27% respectively).
Insignificant difference was noted among age of lung and bladder cancer patients
compared with control group. The results
In this paper, two parameters for the Exponential distribution were estimated using the
Bayesian estimation method under three different loss functions: the Squared error loss function,
the Precautionary loss function, and the Entropy loss function. The Exponential distribution prior
and Gamma distribution have been assumed as the priors of the scale γ and location δ parameters
respectively. In Bayesian estimation, Maximum likelihood estimators have been used as the initial
estimators, and the Tierney-Kadane approximation has been used effectively. Based on the MonteCarlo
simulation method, those estimators were compared depending on the mean squared errors (MSEs).The results showed that the Bayesian esti
This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
In this paper we use non-polynomial spline functions to develop numerical methods to approximate the solution of 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of these method, and to compare the computed results with other known methods.
The paper is concerned with posterior analysis of five exponentiated (Weibull, Exponential, Inverted Weibull, Pareto, Gumbel) distrebutions. The expressions for Bayes estimators of the shape parameters have been derived under four different prior distributions assuming four different loss functions. The posterior predictive distributions have been obtained, and the comparison between estimators made by using the mean squared errors through generated different sample sizes by using simulation technique. In general, the performance of estimators under Chi-square prior using squared error loss function is the best.
This study aimed at the investigation of abnormal liver and renal functions by biochemical manifestations of underlying metabolic abnormalities in relation to hyperglycemia in non-insulin-dependent diabetic patients. The study comprised 118 diabetic patients (56 males, 62 females) and 60 age-matched healthy non-diabetic controls (30 males, 30 females). All subjects were tested for serum levels of liver enzymatic indicators, which include aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP), as well as non enzymatic parameters, including total bilirubin and total proteins.Also, serum levels of renal function markers, including microalbumin, creatinine, urea, and uric acid were measured.
The find
... Show MoreIn this paper, we introduce an approximate method for solving fractional order delay variational problems using fractional Euler polynomials operational matrices. For this purpose, the operational matrices of fractional integrals and derivatives are designed for Euler polynomials. Furthermore, the delay term in the considered functional is also decomposed in terms of the operational matrix of the fractional Euler polynomials. It is applied and substituted together with the other matrices of the fractional integral and derivative into the suggested functional. The main equations are then reduced to a system of algebraic equations. Therefore, the desired solution to the original variational problem is obtained by solving the resul
... Show More