Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.
The aim of this research to study.
The dimensions of organizational learning have been defined(learning dynamics, individuals empowerment, knowledge management and technology application) as well as the dimensions of learning organization have been defined (culture values, knowledge transfer, communication and employee characteristics), Asset completion questionnaire was used to collect data of this research from a purposely sample represent forty employees who works in Iraqi Planning Ministry at different positions. The research divided to four parts :
The first to the research methodology, the second to the theoretical review o
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreThe blade pitch angle (BPA) controller is key factor to improve the power generation of wind turbine (WT). Due to the aerodynamic structural behavior of the rotor blades, wind turbine system performance is influenced by pitch angle and environmental conditions such as wind speed, which fluctuate throughout the day. Therefore, to overcome the pitch angle control (PAC) problem, high wind speed conditions, and due to type-1 and type-2 fuzzy logic limitations for handling high levels of uncertainty, the newly proposed optimal hybrid type-3 fuzzy logic controller has been applied and compared since type-3 fuzzy controllers utilize three-dimensional membership functions, unlike type-2 and type-1 fuzzy logic controllers. In this paper six differen
... Show MoreConflict is a common but complicated phenomenon. It has been extensively researched in many domains, including philosophy, sociology, psychology, and linguistics. Using the Critical Discourse Approach, this study examines the issue of self-society conflict in The Handmaid’s Tale. The significance of this work lies in the identification and explanation of the discursive strategies that force the ideological polarization of the positively portrayed self versus the negatively portrayed other. The purpose of this study is to answer two questions: what are the discursive strategies used in The Handmaid’s Tale to create a positive or negative representation, and how are these strategies implemented? Five extracts from The Handmaid’s
... Show MoreLanguage always conveys ideologies that represent an essential aspect of the world we live in. The beliefs and opinions of an individual or community can be organized, interacted with, and negotiated via the use of language. Recent researches have paid attention to bullying as a social issue. They have focused on the psychological aspect of bullying rather than the linguistic one. To bridge this gap, the current study is intended to investigate the ideology of bullying from a critical stylistic perspective. The researchers adopt Jeffries' (2010) critical stylistics model to analyze the data which is five extracts taken from Hunt’s Fish in a Tree (2015). The analysis demonstrates
... Show MoreThe research aims to find the impact of a proposed strategy according to the Luria model on realistic thinking among fifth-class scientific students and their achievement in mathematics. To achieve it, the experimental research method and the quasi-experimental design were used for two equal groups, one of them is a control group taught in traditional way and the other is an experimental one taught according to strategy based on Luria model. The research community represents the students of the fifth scientific class from the General Directorate of Education of Karkh First. The research sample (40) students were deliberately chosen and distributed equally between the two groups after making sure that they were equals in their previo
... Show MoreA simulation study of using 2D tomography to reconstruction a 3D object is presented. The 2D Radon transform is used to create a 2D projection for each slice of the 3D object at different heights. The 2D back-projection and the Fourier slice theorem methods are used to reconstruction each 2D projection slice of the 3D object. The results showed the ability of the Fourier slice theorem method to reconstruct the general shape of the body with its internal structure, unlike the 2D Radon method, which was able to reconstruct the general shape of the body only because of the blurring artefact, Beside that the Fourier slice theorem could not remove all blurring artefact, therefore, this research, suggested the threshold technique to eliminate the
... Show More