Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.
ناقش البحث في طياته عدداً من القضايا الرئيسة المتعلقة بالتقييم الاستراتيجي والإطار العام للخطة الاستراتيجية المقترحة لشركة نفط ميسان للسنوات الخمس المقبلة (2020_2024)، وهدف هذا البحث يتمحور في تقييم عملية صياغة استراتيجية شركة نفط ميسان لتحديد نقاط القوة وتعضيدها ومواطن الضعف ومحاولة معالجتها لتجنب الوقوع بها عند وضع استراتيجية للسنوات القادمة، وعلى هذا الاساس فان مشكلة البحث تكمن في مدى نجاح الاستراتي
... Show MoreThe Cu(II) was found using a quick and uncomplicated procedure that involved reacting it with a freshly synthesized ligand to create an orange complex that had an absorbance peak of 481.5 nm in an acidic solution. The best conditions for the formation of the complex were studied from the concentration of the ligand, medium, the eff ect of the addition sequence, the eff ect of temperature, and the time of complex formation. The results obtained are scatter plot extending from 0.1–9 ppm and a linear range from 0.1–7 ppm. Relative standard deviation (RSD%) for n = 8 is less than 0.5, recovery % (R%) within acceptable values, correlation coeffi cient (r) equal 0.9986, coeffi cient of determination (r2) equal to 0.9973, and percentage capita
... Show MoreThe rheological behavior among factors that are present in Stokes law can be used to control the stability of the colloidal dispersion system. The felodipine lipid polymer hybrid nanocarriers (LPHNs) is an interesting colloidal dispersion system that is used for rheological characteristic analysis. The LPHNs compose of polymeric components and lipids. This research aims to prepare oral felodipine LPHNs to investigate the effect of independent variables on the rheological behavior of the nanosystem. The microwave-based technique was used to prepare felodipine LPHNs (H1-H9) successfully. All the formulations enter the characterization process for particle size and PDI to ascertain the colloidal properties of the prepared nanosystem t
... Show MoreObjectives: Small field of view gamma detection and imaging technologies for monitoring in vivo tracer uptake are rapidly expanding and being introduced for bed-side imaging and image guided surgical procedures. The Hybrid Gamma Camera (HGC) has been developed to enhance the localization of targeted radiopharmaceuticals during surgical procedures; for example in sentinel lymph node (SLN) biopsies and for bed-side imaging in procedures such as lacrimal drainage imaging and thyroid scanning. In this study, a prototype anthropomorphic head and neck phantom has been designed, constructed, and evaluated using representative modelled medical scenarios to study the capability of the HGC to detect SLNs and image small organs. Methods: An anthropom
... Show MoreIntroduction: The use of screw-retained hybrid arch bars (HABs) is a relatively recent development in the treatment of mandibular fractures. The purpose of this study is to compare the clinical outcome between HAB and the conventional Erich arch bar (EAB) in the closed treatment of mandibular fractures. Materials and methods: This study included 18 patients who were treated for mandibular fractures with maxillomandibular fixation (MMF), patients were randomly assigned into a control group (n = 10) in which EAB was used and study group (n = 8) in which HAB was used. The outcome variables were time required for application and removal, gingival inflammation scores, postoperative complications, and incidence of wire-stick injury or gloves perf
... Show MoreDistributed Denial of Service (DDoS) attacks on Web-based services have grown in both number and sophistication with the rise of advanced wireless technology and modern computing paradigms. Detecting these attacks in the sea of communication packets is very important. There were a lot of DDoS attacks that were directed at the network and transport layers at first. During the past few years, attackers have changed their strategies to try to get into the application layer. The application layer attacks could be more harmful and stealthier because the attack traffic and the normal traffic flows cannot be told apart. Distributed attacks are hard to fight because they can affect real computing resources as well as network bandwidth. DDoS attacks
... Show MoreThe research aimed at designing teaching program using jigsaw in learning spiking in volleyball as well as identifying the effect of these exercises on learning spring in volleyball. The researchers used the experimental method on (25) students as experimental group and (27) students as controlling group and (15) students as pilot study group. The researchers conducted spiking tests then the data was collected and treated using proper statistical operations to conclude that the strategy have a positive effect in experimental group. Finally, the researchers recommended using the strategy in making similar studies on other subjects and skills.
Liquid electrodes of domperidone maleate (DOMP) imprinted polymer were synthesis based on precipitation polymerization mechanism. The molecularly imprinted (MIP) and non-imprinted (NIP) polymers were synthesized using DOMP as a template. By methyl methacrylate (MMA) as monomer, N,Nmethylenebisacrylamide (NMAA) and ethylene glycol dimethacrylate (EGDMA) as cross-linkers and benzoyl peroxide (BP) as an initiator. The molecularly imprinted membranes were synthesis using acetophenone (APH), di-butyl sabacate (DBS), Di octylphthalate (DOPH) and triolyl phosphate (TP)as plasticizers in PVC matrix. The slopes and limit of detection of l
... Show MoreClassification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE), Border
... Show More