Preferred Language
Articles
/
LxfsW5IBVTCNdQwCqq1N
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.

Scopus Clarivate Crossref
View Publication
Publication Date
Fri May 17 2019
Journal Name
Lecture Notes In Networks And Systems
Features Selection for Intrusion Detection System Based on DNA Encoding
...Show More Authors

Intrusion detection systems detect attacks inside computers and networks, where the detection of the attacks must be in fast time and high rate. Various methods proposed achieved high detection rate, this was done either by improving the algorithm or hybridizing with another algorithm. However, they are suffering from the time, especially after the improvement of the algorithm and dealing with large traffic data. On the other hand, past researches have been successfully applied to the DNA sequences detection approaches for intrusion detection system; the achieved detection rate results were very low, on other hand, the processing time was fast. Also, feature selection used to reduce the computation and complexity lead to speed up the system

... Show More
Scopus (5)
Scopus
Publication Date
Thu Sep 15 2022
Journal Name
Knowledge And Information Systems
Multiresolution hierarchical support vector machine for classification of large datasets
...Show More Authors

Support vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Two-Stage Classification of Breast Tumor Biomarkers for Iraqi Women
...Show More Authors

Objective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.

Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 31 2019
Journal Name
Biochemical & Cellular Archives
8-HYDROXY-2-DEOXY GUANOSINE IS A NOVEL NEW BIOCHEMICAL MARKER FOR PATIENTS WITH MULTIPLE SCLEROSIS AND CORRELATION WITH PARAOXANASE-1 AND MDA
...Show More Authors

Multiple sclerosis (MS) is a chronic, inflammatory demyelinating disease of central nervous system with complex etiopathogenesis that impacts young adults (Lee et al., 2015), and MS impacts younger and middle aged character and leads to a range of disabilities that can alter their daily routines (Yara et al, 2010). Although, the exact cause of MS is still undetermined, the disease is mediated by adaptive immunity through the infiltration of T cells into the central nervous system (Bjelobaba et al, 2017). MS causes the Focal neurological symptomsand biochemical changes in the molecular level and the variation of neural cells such as loss or alteration of sensation, motor function, visible signs such as blurred vision or transient blindness,

... Show More
Publication Date
Sun Jan 01 2023
Journal Name
International Journal Of Research In Social Sciences & Humanities
HRM Management Approaches, With a Focus on Employee Centric Approach: A Case Study In The Rafidain Bank In Iraq
...Show More Authors

This research attempts to shed light on a topic that is considered one of the most important topics of HRMs management, which is the Employee centric approach by examining its philosophy and understanding . To achieve the goal, the research relied on the philosophical analytical method, which is one of the approaches used in theoretical studies. The research reached a set of conclusions, the most important of which are the theoretical studies that addressed this entry in the English language and the lack of it in the Arabic language, according to the researcher's knowledge. The research reached a set of recommendations, the most important of which was that this approach needs more research, analysis and study at the practical and th

... Show More
View Publication
Crossref
Publication Date
Mon Jun 04 2018
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Synthesis and antimicrobial evaluation with DFT study for new thiazole derivatives
...Show More Authors

Two compounds,[2-amino-4-(4-nitro phenyl) 1,3-thiazole],(4) and [2-amino-4-(4-bromo phenyl) 1,3-thiazole],(5), were synthesized by refluxing thiourea (1) with each of  para-ntiro and para-bomophanacyl bromides(2) and (3) respectively, in absolute methanol. Then, by reaction of [5] with 3,5-dinitrobenzoyl chloride in dimethylformamide (DMF) yielded  (6) .On the other hand, reaction of (4) with chloroacetyl chloride in dry benzene afforded (7), which is  upon treatment with thiourea in absolute methanol, af

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Fri Aug 05 2016
Journal Name
International Journal Of Advances In Scientific Research And Engineering
Image Encryption Using Modified AES with Bio-Chaotic
...Show More Authors

Due to the vast using of digital images and the fast evolution in computer science and especially the using of images in the social network.This lead to focus on securing these images and protect it against attackers, many techniques are proposed to achieve this goal. In this paper we proposed a new chaotic method to enhance AES (Advanced Encryption Standards) by eliminating Mix-Columns transformation to reduce time consuming and using palmprint biometric and Lorenz chaotic system to enhance authentication and security of the image, by using chaotic system that adds more sensitivity to the encryption system and authentication for the system.

View Publication Preview PDF
Publication Date
Mon Jan 20 2025
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Assessing Landsat Processing Levels and Support Vector Machine Classification
...Show More Authors

The availability of different processing levels for satellite images makes it important to measure their suitability for classification tasks. This study investigates the impact of the Landsat data processing level on the accuracy of land cover classification using a support vector machine (SVM) classifier. The classification accuracy values of Landsat 8 (LS8) and Landsat 9 (LS9) data at different processing levels vary notably. For LS9, Collection 2 Level 2 (C2L2) achieved the highest accuracy of (86.55%) with the polynomial kernel of the SVM classifier, surpassing the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) at (85.31%) and Collection 2 Level 1 (C2L1) at (84.93%). The LS8 data exhibits similar behavior. Conv

... Show More
View Publication
Publication Date
Fri Jan 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
BotDetectorFW: an optimized botnet detection framework based on five features-distance measures supported by comparisons of four machine learning classifiers using CICIDS2017 dataset
...Show More Authors

<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver &amp; kroeber, overlap, and pearson correlation

... Show More
View Publication
Scopus (7)
Crossref (2)
Scopus Crossref
Publication Date
Mon Apr 01 2024
Journal Name
Iraqi Journal Of Oil And Gas Research (ijogr)
Comparative study of electrochemical oxidation system hybrid with photocatalytic system for the treatment of Al-Najaf petroleum refinery wastewater
...Show More Authors

View Publication
Crossref